上海辅泽商贸有限公司

微孔板迷你离心机,细胞离心涂片机,3111二氧化碳培养箱,赛洛捷克离心机,FC酶标仪

化工仪器网收藏该商铺

9

联系电话

13816982406

您所在位置:
上海辅泽商贸有限公司>>化学试剂>>生命科学-代谢组学>> 在植物中的应用Sigma-Aldrich 代谢组学
 QQ交谈
产品展示

在植物中的应用Sigma-Aldrich 代谢组学

  • 公司名称:
  • 更新时间:
  • 所 在 地:
  • 生产地址:
  • 浏览次数:
  • 上海辅泽商贸有限公司
  • 2018-07-24 10:02:29
  • 上海市
  • Sigma-Aldrich
  • 959

我要询价

【简单介绍】

品牌 Sigma-Aldrich 货号 在植物中的应用
规格 糖酵解代谢 供货周期 一周
主要用途 脂肪酸/胆固醇代谢
基因组编辑工具-CRISPR/Cas9
继ZFN(Zinc Finger Nucleases)技术后,Merck在2013年推出新一代基因组编辑工具--CRISPR/Cas9,让研究人员以更快、更经济的方式实现基因组特定位点的编辑。

【详细说明】

基因组编辑工具-CRISPR/Cas9

  

继ZFN(Zinc Finger Nucleases)技术后,Merck在2013年推出新一代基因组编辑工具--CRISPR/Cas9,让研究人员以更快、更经济的方式实现基因组特定位点的编辑。凭借过去10年在基因组编辑领域的丰富经验积累以及专业的生物信息学平台,Merck已经成功设计出覆盖人类,小鼠和大鼠三个物种的所有基因的CRISPR/Cas9载体,并可以提供在线定制服务,以及完整的CRISPR实验workflow解决方案。此外,默克与Sanger Institute合作开发了人、小鼠全基因组CRISPR 文库,以帮助科学家实现基因功能的快速筛选、规模化的模型建立以及药物作用筛选等。

  • 高效:优化的载体设计,大限度提高转染效率,简化筛选工作
  • 特异:特殊的gRNA设计和双切口酶系统,大限度提高特异性
  • 全面:产品齐全,可提供质粒、RNA、慢病毒载体、RNP等形式,涵盖人、大鼠、小鼠、植物等多个物种,更有Sanger Arrayed和Broad Pools全基因组文库以及重要通路的亚文库
  • 掌控:强大的慢病毒全基因组文库可轻松进行高通量筛选,全面掌控人或小鼠的基因组

 

CRISPR/Cas9 基因编辑工具
• Sanger Arrayed Lentiviral CRISPR
  Libraries
• Lentiviral CRISPR Pools Libraries
• CRISPR/Cas9单载体表达系统
• CRISPR Cas9-D10A双切口酶系统
• SygRNA® Cas9 RNP系统
• CRISPR/Cas9基因激活表达载体
• CRISPR/Cas9在植物中的应用
• Cas9蛋白
• CRISPR对照 (DNA and Virus)

Genome Editing in Plants with CRISPR/Cas9

Successful ZFN-induced gene targeting was published as early as 2003. Since that time targeted genome editing technology has rapidly advanced and been made commercially available. Most recently, the discovery of the CRISPR/Cas9 pathway has accelerated interest in this field, opening up new possibilities for research and development. Although the CRISPR pathway was identified in bacteria as part of a putative adaptive immune system, it was quickly adapted to the purpose of modifying eukaryotic genomes. While tools like ZFNs laid the groundwork for genome editing today, there are limitations to this founding technology and others like it: the protein:DNA interaction of ZFNs makes designing them complex, the assembly of the ZFN expression construct is time-consuming, and the options for ZFN targeting are limited in many A-T rich plant genomes. The CRISPR pathway, as it has been adopted and modified for eukaryotic genome editing, overcomes many of these hurdles: it relies on an RNA:DNA interaction to find its genomic target, the recognition sequence required for this binding event is an easily altered 18-20 base pairs, and the only requirement for the nuclease binding is the presence of an NGG next to the target site. The first reports of the use of CRISPR/Cas9 in plants studying transient expression assays using Agrobacterium came out in 2013. The CRISPR/Cas9 technology has been successfully applied in model plants (Nicotiana benthamianaArabidopsis thaliana) and crops (rice, wheat) and the list is growing.

Sign up to receive the latest updates on CRISPR technology such as new journal articles, protocols, and product launches.


On this page:

  • CRISPR/Cas9: What is it and how does it work?
  • Benefits of using CRISPR/Cas9 for genome-editing
  • Simplified Workflow: CRISPR/Cas9 in Plants
  • Ready-to-Use Cas9 and Guide RNA (gRNA) Expression Plasmids for Monocots and Dicots
  • Custom CRISPR/Cas9 Plant Products
  • Custom CRISPR/Cas9 Order Form

CRISPR/Cas 9: What is it and how does it work?

CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats. The discovery of the type II prokaryotic CRISPR “immune system” has allowed for the development for an RNA-guided genome editing tool that is simple, easy and quick to implement. The CRISPR/Cas9 system consists of a single monomeric protein and a chimeric RNA. A 20-nt sequence in the gRNA confers sequence specificity and cleavage is mediated by the Cas9 protein. Watson–Crick base pairing with the target DNA sequence is the basis for gRNA-based cleavage, making sophisticated protein engineering for each target unnecessary. Only a 20 nt in the gRNA is needs to be modified to facilitate the recognize a different target. 

CRISPR/Cas9 consists of a Cas9 protein, a CRISPR RNA (crRNA), and a trans-activating crRNA ( tracrRNA). In gene editing applications, crRNA and tracrRNA are often fused into a single guide RNA (sgRNA). The ribonucleoprotein invades the target with crRNA guide sequence by forming a 20-bp RNA/DNA hybrid and displacing the opposite DNA strand after it encounters a protospacer adjacent motif (PAM), such as NGG. Cas9 endonuclease subsequently cleaves the complementary DNA strand (target strand) with a HNH nuclease domain and the displaced DNA strand (non-target strand) with a RuvC-like nuclease domain to create a double strand break (DSB). The repair of the DSB by host cell via non-homologous end joining (NHEJ) or homology directed repair (HDR) pathways can be utilized to create gene knockout or introduce a specific genetic modification through homologous recombination with a DNA donor.

RNA-guided endonucleases (RGENs) consisting of the Cas9 protein derived from Streptococcus pyogenes and guide RNAs (gRNAs) can be customized by replacing only the RNA component leading to decreases in labor and time compared to other gene editing methods. Using either Agrobacterium tumefaciens or by trans­fecting plasmids that encode them, programmable nucleases can be delivered into plant cells, where these nucleases cleave chromosomal target sites in a sequence-dependent manner.  The result is site-specific DNA double-strand breaks (DSBs) whose repair by endogenous systems results in targeted genome modifications.

CRISPR Genomic Target Site

 

Benefits of using CRISPR/Cas9 for genome-editing

Main advantages of CRISPR/Cas9 are in terms of simplicity, accessibility, cost and versatility.

CRISPR/Cas9 system does not require any protein engineering steps, making it much more straightforward to test multiple gRNAs for each target gene.

Only 20 nt in the gRNA sequence need to be changed to confer a different target specificity, which means that cloning is also unnecessary.

Any number of gRNAs can be produced by in vitro transcription using two complementary annealed oligonucleotide. This allows the inexpensive assembly of large gRNA libraries so that the CRISPR/Cas9 system can be used for high-throughput functional genomics applications.

Another advantage of CRISPR/Cas9 compared to ZFNs and TALENs is the ease of multiplexing. The simultaneous introduction of DSBs at multiple sites can be used to edit several genes at the same time.  It can be particularly useful to knock out redundant genes or parallel pathways. Researchers can engineer large genomic deletions or inversions by targeting two widely spaced cleavage sites on the same chromosome. Multiplex editing with the CRISPR/Cas9 system simply requires the monomeric Cas9 protein and any number of different sequence-specific gRNAs. In contrast, multiplex editing with ZFNs or TALENs requires separate dimeric proteins specific for each target site.

CRISPR/Cas9 system can cleave methylated DNA in human cells allowing genomic modifications that are beyond the reach of the other nucleases. While this has not been specifically explored in plants, it is reasonable to believe that the ability to cleave methylated DNA is intrinsic to the CRISPR/Cas9 system and not dependent on the target genome.
 

Simplified Workflow: CRISPR/Cas9 in Plants

Plant Biotechnology is entering a new era with the introduction of genome editing technologies that enables precise manipulation of specific genomic thereby superseding older methods of random mutagenesis as EMS mutagenesis and g-radiation sequences. Plant CRISPR/Cas9 products are intended for Agrobacterium-mediated plant transformation or biolistic microparticle bombardment or protoplast transformation. The products are based on the type IIA CRISPR/Cas9 derived from Streptococcus pyogenes. The native Cas9 coding sequence was codon optimized for expression in monocots and dicots, respectively. The monocot Cas9 constructs contain a monocot U6 promoter for sgRNA expression, and the dicot Cas9 constructs contain a dicot U6 promoter. The plant selection markers include hygromycin B resistance gene, neomycin phosphotransferase gene, and the bar gene (phosphinothricin acetyl transferase).

The pipeline of generating a CRISPR/Cas9-mutagenised plant line.

The pipeline of generating a CRISPR/Cas9-mutagenised plant line. c, control; m, mutagenized; RE, restriction enzyme. CELI and T7 are DNA endonucleases used in the surveyor assay.
 

 

Ready-to-Use Cas9 and Guide RNA (gRNA) Expression Plasmids for Monocots and Dicots

  • Sigma plant CRISPR/Cas9 products are intended for Agrobacterium-mediated plant transformation or biolistic microparticle bombardment or protoplast transformation
  • A codon optimized Cas9 protein and a gRNA are expressed from a single vector and provided as ready-to-use, transfection-grade DNA.

Basic structure of CRISPR-Cas9 constructs for Agrobacterium-mediated Transformation.

Basic structure of CRISPR/Cas9 constructs for Agrobacterium-mediated Transformation.
 

 

Basic structure of CRISPR-Cas9 constructs for biolistics or protoplast Transformation.

Basic structure of CRISPR/Cas9 constructs for biolistics or protoplast Transformation.

 

Ordering CRISPR/Cas9 Vector

To customize and purchase CRISPR click ORDER CRISPR below.

Plant CRISPR/Cas9 Product List

 

Product No.Transformation methodCas9sgRNA expression promoterSelection markerCustom Order
CRISPRPLAgrobacteriumMonocot codon optimizedMonocot U6HygromycinCustom order
CRISPRPLAgrobacteriumMonocot codon optimizedMonocot U6NeomycinCustom order
CRISPRPLAgrobacteriumMonocot codon optimizedMonocot U6BarCustom order
CRISPRPLAgrobacteriumDicot codon optimizedDicot U6HygromycinCustom order
CRISPRPLAgrobacteriumDicot codon optimizedDicot U6NeomycinCustom order
CRISPRPLAgrobacteriumDicot codon optimizedDicot U6BarCustom order
CRISPRPLBiolistics/ProtoplastMonocot codon optimizedMonocot U6HygromycinCustom order
CRISPRPLBiolistics/ProtoplastMonocot codon optimizedMonocot U6NeomycinCustom order
CRISPRPLBiolistics/ProtoplastMonocot codon optimizedMonocot U6BarCustom order
CRISPRPLBiolistics/ProtoplastDicot codon optimizedDicot U6HygromycinCustom order
CRISPRPLBiolistics/ProtoplastDicot codon optimizedDicot U6NeomycinCustom order
CRISPRPLBiolistics/ProtoplastDicot codon optimizedDicot U6BarCustom order

 

Custom CRISPR GUS vectors

Product NoTransformation MethodPromotorgRNAReporterCustom Order
CRISPRPLAgrobacteriumMonocot U6customGUSCustom Order
CRISPRPLAgrobacteriumMonocot U6Arabdopsis GAPDHGUSCustom Order
CRISPRPLAgrobacteriumDicot U6customGUSCustom Order
CRISPRPLAgrobacteriumDicot U6Arabdopsis GAPDHGUSCustom Order

 

 References

  • Li JF, Zhang D, Sheen J. Targeted Plant Genome Editing via the CRISPR/Cas9 Technology. Methods Mol Biol. 2015;1284:239-55.
  • Ali Z, Abul-Faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes NJ, Voytas DF, Dinesh-Kumar S, Mahfouz MM: Efficient Virus-Mediated Genome Editing in Plants using the CRISPR/Cas9 System.Mol Plant. 2015 Mar 5. pii: S1674-2052(15)00162-8.
  • Luisa Bortesi and Rainer Fischer: The CRISPR/Cas9 system for plant genome editing and beyond Biotechnology Advances Volume 33, Issue 1, January–February 2015, Pages 41–52.
  • Li JF, Zhang D, Sheen J. Targeted Plant Genome Editing via the CRISPR/Cas9 Technology. Methods Mol Biol. 2015;1284:239-55.
  • Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 2014 Nov 29;14:327.
  • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S: Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 2013, 31:691–693.
  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C: Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 2013, 31:686–688.
  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J: Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 2013, 31:688–691.
  • Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK: Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 2013, 23:1229–1232.
  • Xie K, Yang Y: RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant. Volume 6, Issue 6, November 2013, Pages 1975–1983.
  • Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ: Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 2013, 23:1233–1236.-
    
留言框
感兴趣的产品: *
留言内容:
您的姓名: *
您的单位:
联系电话: *
微信:
常用邮箱:
详细地址:
省份: *
验证码: * =   请输入计算结果(填写阿拉伯数字),如:三加四=7
      
产品搜索

请输入产品关键字:

联系方式
地址:上海市虹口区曲阳路910号复城国际1101
邮编:200437
联系人:郑经理
电话:13816982406,021-65010900
传真:021-65010900
手机:13816982406
留言:发送留言
网址:
商铺:https://www.chem17.com/st215208/
| 商铺首页 | 公司档案 | 产品展示 | 供应信息 | 公司动态 | 询价留言 | 联系我们 | 会员管理 |
化工仪器网 设计制作,未经允许翻录必究.Copyright(C) https://www.chem17.com, All rights reserved.
以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,化工仪器网对此不承担任何保证责任。
温馨提示:为规避购买风险,建议您在购买产品前务必确认供应商资质及产品质量。
二维码 在线交流

扫一扫访问手机站