| 注册| 产品展厅| 收藏该商铺

行业产品

当前位置:
山东恒泰正宇电源科技有限公司>>国产蓄电池>>大华蓄电池>> DHB12-150DAHUA大华蓄电池DHB12-150 12V150AH/20HR

DAHUA大华蓄电池DHB12-150 12V150AH/20HR

返回列表页
  • DAHUA大华蓄电池DHB12-150 12V150AH/20HR
  • DAHUA大华蓄电池DHB12-150 12V150AH/20HR
  • DAHUA大华蓄电池DHB12-150 12V150AH/20HR
  • DAHUA大华蓄电池DHB12-150 12V150AH/20HR
  • DAHUA大华蓄电池DHB12-150 12V150AH/20HR
收藏
举报
参考价 面议
具体成交价以合同协议为准
  • 型号 DHB12-150
  • 品牌 其他品牌
  • 厂商性质 经销商
  • 所在地 济南市
在线询价 收藏产品

更新时间:2020-07-16 15:55:15浏览次数:197

联系我们时请说明是化工仪器网上看到的信息,谢谢!

同类优质产品

更多产品

产品分类品牌分类

更多分类

产品简介

供货周期 现货 规格 12V系列
货号 4123185 应用领域 医疗卫生,能源,电子,交通,电气
主要用途 控制系统,电动玩具,应急灯,电动工具,报警系统,应急照明系统,备用电力电源,UP
控制系统,电动玩具,应急灯,电动工具,报警系统,应急照明系统,备用电力电源,UPS,电力系统,电信设备,消防和安全防卫系统,铁路系统以及发电站等。
DAHUA大华蓄电池DHB12-150 12V150AH/20HR

详细介绍

DAHUA大华蓄电池DHB12-150 12V150AH/20HR

DAHUA大华蓄电池DHB12-150 12V150AH/20HR

 

功率因数校正简写为PFC,改善源侧功率因数的方法主要有两种:一种是元源功率因数校正技术,另一种是有源功率因数校正技术。前者主要针对供电系统和较大的厂矿企业,由众多的电机感性负载造成的低功率因数问题。校正的方法是在电网人口处并联适当的电容器,使λ值尽量接近1,以达到节能目的,也就是我们常说的无功补偿。后者主要针对开关电源负载,由于近年来计算机、程控电话交换机等迅速发展,开关电源及不间断电源(UPS)被广泛采用,而这些电源设备的输入侧多为直接整流和电容滤波的非线性工作方式,这样就使PFC技术得到了人们的广泛重视,并且被普遍应用。
功率因数的校正方法:有源功率因数校正的基本思想是:将输入交流电压进行全波整流,对其整流电压进行直流-直流变换,通过适当控制使输入电流自动跟随全波整流后的电压波形,使输入电流正弦化,虽然PFC也是开关电源,但与传统的开关电源有明显的区别。
电源技术功率变换电路
在变换过程中,除了使功率器件工作在线性状态以外,经常工作在开关状态,按设定的时序,在控制信号作用下实现电能的变换。在器件的工作过程中将伴随着各个支路间电流的转移,故有时简称为"换流"。对于由半控型器件组成的电路,由于器件本身无关断能力,常常在换流过程中借助外部条件来关断处于导通状态的器件。换流成功是半控型电路正常工作的必要条件,因而换流过程是这类电路分析的主要内容,换流技术便是这类变换技术的核心。
1功率变换电路
从电能变换功能来看,有下列四类:
1、将交流电变为直流电,即AC/DC变换。实现这一功能的变换电路,一般称为整流电路或整流器。
2、将直流电变为交流电,即DC/AC变换。实现这一功能的变换电路,一般称为逆变电路或逆变器。
3、将一种直流电变为另一种直流电,即DC/DC变换。通过这种变换实现直流电压(电流)的幅值或极性的改变,一般称为直流/直流变换电路或DC/DC变换器。
4、将一种交流电变为另一种交流电,即AC/AC变换。通过这种变换实现交流电压(电流)、频率的变换,前者称为交流调压电路(例如稳压器、稳流器),后者称为变频电路(或变频器),有时也需要改变相数(例如单相变三相或三相变单相等)。
当然,为了进一步提高供电的可靠性,还可以设置备用设备、智能监控、显示报警等环节,电源技术对科学技术及工农业生产具有明显的促进作用,世界各国都很重视这一技术的发展。我国的电源技术紧跟水平,近20年来已有长足的进步。总的发展趋势是:
1、功率半导体器件:重点发展全控型功率器件,目前功率MOSFET和1GBT等器件在迅速发展,因为这种器件具有自关断能力,可以取消原来半控型器件采用的换流电路,从而具有简化电路、提高可靠性、增加效率、降低成本等优点,同时还能提高开关工作频率,取得进一步减小体积重量、改善输出波形、降低噪声等良好效果,功率半导体器件,继续向提高容量、改善动态性能,向模块式、组合式方向发展。
2、功率变换电路:目前广泛采用的全控型器件和脉宽调制(PWM)方式,并且采用源侧功率因数校正(PFC)电路,使输入电流正弦化,从而节约电能、减小对电网的干扰,克服了相控方式输入功率因数较低的缺点。
目前推广采用的谐振型软开关等新型电路,使开关电源的工作频率由百千赫级发展到兆赫级,进一步提高效率,使电源设备小型化,显著降低纹波电压,从而提高了电源性能,从控制手段来看,由原来的分立元件和中小规模集成电路组成的硬件电路发展为由微处理器和单片机组成的软件控制方式,从而达到较高的数字化和智能化程度,并且进一步提高电源设备的可靠性,由上述可见,电源技术在迅速发展,它将为生产和科学技术进步作出更大的贡献。

型号

电压

容量(AH)

外形尺寸(mm)

重量(Kg)

大放电电流(A)

大充电电流(A)

内阻(mΩ)

20hr

10hr

5hr

总高

DHB1270

12

7

6.5

6

151

66

95

100

2.35

70

2.1

25

DHB12100

12

10

9.3

8.5

151

99

95

100

3.5

100

3

15

DHB12120

12

12

11.2

10.2

151

99

95

100

3.9

120

3.6

16

DHB12260

12

26

24.2

22.1

166

175

125

125

8

260

7.8

10

DHB12300

12

30

28

25.5

196

131

156

180

10.3

300

9

 

DHB12330

12

33

30.7

28

196

131

156

180

11.8

165

9.9

10

DHB12360

12

36

33.5

30.6

196

131

156

180

12.1

180

10.8

 

DHB12400

12

40

37.2

34

198

166

171

171

15.2

200

12

8

DHB12550

12

55

51

46.5

228

137

210

229

19.1

275

16.5

6

DHB12650

12

65

60

55

350

167

179

182

22.8

325

19.5

6

DHB12700

12

70

65

59.5

259

168

208

227

26

350

21

6

DHB12750

12

75

69.5

64

259

168

208

227

26

375

22.5

6

DHB12800

12

80

74

68

259

168

208

227

28

400

24

5.5

DHB12900

12

90

84

76

307

169

211

229

30

450

27

5.5

DHB12900

12

90

84

76

307

169

211

229

31.2

450

27

5.5

DHB12-100

12

100

93

85

328

172

222

222

30

500

30

5

DHB12-120

12

120

111.5

102

409

177

225

225

38.2

600

36

4.5

DHB12-150

12

150

139.5

127.5

483

170

241

241

47.8

750

45

4

DHB12-200

12

200

186

170

522

240

219

240

66.4

1000

60

4

上述四种变换电路就其技术而言统称为"变流技术",其电路可以单一使用,也可以组合使用,例如常用的一种变换形式,将工频市电(单相或三相)直接进行整流变成直流电,通过逆变电路使其变成高频交流电(脉冲宽度可调的正负矩形脉冲或脉冲频率可调的准正弦脉冲),再通过整流变成直流电供给负载。在高频变换环节,通过脉宽调制实现输出直流电压的稳定。这就是目前常用的高频开关电源的电路模式,采用的是组合变换方式(内有两次整流和一次逆变)。
控制方式
在变换过程中,除了使功率器件工作在线性状态以外,经常工作在开关状态,按设定的时序,在控制信号作用下实现电能的变换。在器件的工作过程中将伴随着各个支路间电流的转移,故有时简称为"换流"。对于由半控型器件组成的电路,由于器件本身无关断能力,常常在换流过程中借助外部条件来关断处于导通状态的器件。换流成功是半控型电路正常工作的必要条件,因而换流过程是这类电路分析的主要内容,换流技术便是这类变换技术的核心。
在Ac/OC变换过程中常常引入高频变换环节,达到缩小电源设备体积、减轻重量、提高效率、改善动态特性等目的,转换频率一般为几十千赫至几百千赫。
对于各种变换电路的控制方式,可以归纳为下列三种:
1、相(位)控(制)方式:指控制信号幅度的变化转换成变流器件触发脉冲相位的变化,在整流电源或交流稳压电源中常用这种控制方式。
2、频(率)控(制)方式:指控制信号幅度的变化转换成变流器件触发脉冲频率的变化,在逆变电源中常用这种控制方式。
3、斩(波)控(制)方式:指控制信号幅度的变化转换成变流器件"导通时间比"的变化,在直流变换电路中常用这种控制方式。
上述三种控制方式也可以组合使用,例如斩波与频率控制同时采用时,构成正弦波脉冲宽度调制方式(Sinewave-PWM简称SPWM),在交流变换器中常用这种控制方式。
3、电源系统的组成
一般电源系统的组成情况,由市电(电网)或蓄电池或太阳能或燃油发电机提供能源;整流设备将市电或发电机发出的交流电变换成直流电,或把蓄电池的直流电变换成其他电压的直流电送至直流配电屏;将市电或发电机发出的交流电通过稳压设备送至交流配电屏;为了提高供电的可靠性,在电源系统中设有不间断电源(ups),在市电中断时,它的能源由蓄电池或燃油发电机供给,其输出送至交流配电屏;为了安全供电,设有雷电防护装置,它对整流设备、交流稳压设备、UPS及发电机均起保护作用。

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~
二维码 意见反馈
在线留言