上海北诺生物科技有限公司

中级会员·14年

联系电话

15800960770

您现在的位置: 首页> 公司动态> 人物专访:2012年诺贝尔物理学奖法国塞尔日·阿罗什(Serge Haroche)与美国大卫·维因兰德(David Wineland)
中级会员·14年
人:
周经理 刘经理
话:
021-57730393
机:
15800960770
真:
86-021-61496710
址:
上海市徐汇区宜山路520号中华门大厦18楼D座
化:
www.bnbiotech.com
址:
www.bnbiotech.com

扫一扫访问手机商铺

人物专访:2012年诺贝尔物理学奖法国塞尔日·阿罗什(Serge Haroche)与美国大卫·维因兰德(David Wineland)

2012-11-25  阅读(2336)

分享:

 诺贝尔奖,Nobel Prize 

塞尔日·阿罗什 Serge Haroche  大卫·维因兰德 David Wineland



北京时间10月9日下午5点45分,2012年诺贝尔物理学奖揭晓,法国科学家塞尔日·阿罗什(Serge Haroche)与美国科学家大卫·维因兰德(David Wineland)获奖。获奖理由是“发现测量和操控单个量子系统的突破性实验方法”。


 

9 October 2012

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2012 to

Serge Haroche
Collège de France and Ecole Normale Supérieure, Paris, France

and

David J. Wineland
National Institute of Standards and Technology (NIST) and University of Colorado Boulder, CO, USA

"for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

 

Particle control in a quantum world

Serge Haroche and David J. Wineland have independently invented and developed methods for measuring and manipulating individual particles while preserving their quantum-mechanical nature, in ways that were previously thought unattainable.

The Nobel Laureates have opened the door to a new era of experimentation with quantum physics by demonstrating the direct observation of individual quantum particles without destroying them. For single particles of light or matter the laws of classical physics cease to apply and quantum physics takes over. But single particles are not easily isolated from their surrounding environment and they lose their mysterious quantum properties as soon as they interact with the outside world. Thus many seemingly bizarre phenomena predicted by quantum physics could not be directly observed, and researchers could only carry out thought experiments that might in principle manifest these bizarre phenomena.

Through their ingenious laboratory methods Haroche and Wineland together with their research groups have managed to measure and control very fragile quantum states, which were previously thought inaccessible for direct observation. The new methods allow them to examine, control and count the particles.

Their methods have many things in common. David Wineland traps electrically charged atoms, or ions, controlling and measuring them with light, or photons.

Serge Haroche takes the opposite approach: he controls and measures trapped photons, or particles of light, by sending atoms through a trap.

Both Laureates work in the field of quantum optics studying the fundamental interaction between light and matter, a field which has seen considerable progress since the mid-1980s. Their ground-breaking methods have enabled this field of research to take the very first steps towards building a new type of super fast computer based on quantum physics. Perhaps the quantum computer will change our everyday lives in this century in the same radical way as the classical computer did in the last century. The research has also led to the construction of extremely precise clocks that could become the future basis for a new standard of time, with more than hundred-fold greater precision than present-day caesium clocks.

Read more about this year's prize
Information for the Public
Pdf 365 Kb
Scientific Background
Pdf 410 Kb

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
产品对比 二维码 在线交流

扫一扫访问手机商铺

对比框

在线留言