全新的西门子S7-1500PLC 带来了标准型,紧凑型,分布式以及开放式不同类型的 CPU 模块。凭借快速的响应时间、集成的 CPU 显示面板以及相应的调试和诊断机制,SIMATIC S7-1500 的 CPU *地提升了生产效率,降低了生产成本。
产品简介
详细介绍
北京西门子S7-1500PLC模块代理
PLC存储器包含系统存储器和用户存储器两部分。
系统存储器用来存放由PLC生产厂家编写的系统程序,系统程序固化在ROM内,用户不能直接更改,它使PLC具有根本的功用,能够完成PLC设计者规则的各项作业。
系统程序质量的好坏,很大程度上决定了PLC的功用,其内容首要包含三部分。*部分为系统管理程序,它主要操控PLC的运转,使整个PLC按部就班地作业。第二部分为用户指令解释程序,经过用户指令解释程序,将PLC的编程言语变为机器言语指令,再由CPU履行这些指令。第三部分为规范程序模块与系统调用,它包含许多不同功用的子程序及其调用管理程序,如完成输入、输出及特殊运算等的子程序。PLC的详细作业都是由这部分程序来完成的,这部分程序的多少也决定了PLC功用的凹凸。
用户存储器包含用户程序存储器(程序区)和功用存储器(数据区)两部分。用户程序存储器用来存放用户针对详细操控使命用规则的PLC编程言语编写的各种用户程序,以及用户的系统配置。用户程序存储器依据所选用的存储器单元类型的不同,能够是RAM(有掉电维护)、EPROM或EEPROM存储器,其内容能够由用户恣意修正或增删。用户功用存储器是用来存放(回忆)用户程序中使用器件的ON/OFF状况/数值数据等。用户存储器容量的大小,关系到用户程序容量的大小,是反映PLC功用的重要指标之一。
离散制造业的明星产品PLC又是怎么一回事?咱们对PLC又有着怎样的了解,今日就站在PLC的来源、历史地位和发展视点,和朋友们一起探讨什么是PLC这个看似单调老掉牙的论题。
可能有朋友会有疑问,这又不是历史课,为什么要讲来源和历史地位呢?正所谓,以史为鉴,能够知兴替。了解PLC的来龙去脉,才能更明晰的明白PLC存在的意图,了解它的重要性,才能学得更有方向性。不过,也请朋友们放心,历史并不单调,那都是故事串联起来的。下面跟咱们分享两个跟PLC来源有关的故事。
PLC的来源的两个小故事
*个故事:
曾经有一个爱滑雪的工程师,名叫迪克·莫利,他从MIT毕业之后进入一家公司,从事飞行器、通讯体系的设计作业。安静的迪克认真地做着设计、沉溺其间,虽没人留意,但正是他,改变了整个制造业。
1968年1月1日酩酊大醉之后,迪克灵光乍现写下了人类一个PLC的蓝图。这个还没命名的东西应有如下特性:没有进程中止;直接映像进入存储器;没有软件处理重复的业务;巩固的设计以便能真实地作业;运转速度慢,当然,莫利先生随后认识到该特性是一个过错;还要有自己的编程语言,值得一提的是,几个月之后,梯形图逻辑就此面世。
后来,迪克就和他的朋友创立了*康公司来完成这个设想。PLC随后诞生了。
第二个故事:
第三次工业革命的兴起,给了莫利先生的PLC团队一个青史留名的时机。
通用轿车公司发现,每次出产新的车型,整个出产线就要从头折腾一遍,不计其数根电缆都要从头接,不光时间长,还容易犯错,出了错还不好找,声称“查找5小时,修理5分钟”。1968年,为了适应轿车型号不断更新的需求,并能在竞争激烈的轿车工业中占有优势,通用轿车公司提出要研发一种新式的工业操控设备来替代继电器操控设备,为此,拟定了10项公开招标的技术要求。包含Modicon084在内的3款产品参加竞争,另外两个品牌分别是,美国数字设备公司的PDP-14和3-I公司的PDQ-II。
经过竞争,Modicon084凭仗操编程简略、操作便当、环境适应性强等特色成功获得了通用轿车的操控器研发项目,终通用从*康采购了100万美元左右的设备,从此PLC开始流行。
PLC在第三次工业革命中的地位
再来看看PLC在第三次工业革命中占有了怎样的地位。
事实上,从20世纪四五十年代以来,原子能、电子计算机、微电子技术、航天技术等范畴不断获得重大突破,第三次科技革命随之到来。这期间,一大批新式工业诞生,其间划年代含义的是电子计算机的迅速发展和广泛运用,不只开拓了信息年代,也带来了知识经济。知识经济兴旺程度的凹凸更是成为各国综合国力+竞争中成败的关键所在。
而电子计算机技术在工业上广泛运用的代表就是PLC, 1969年上*台PLC:Modicon084, 可谓是开放了工业操控的 PLC 年代。PLC集软件编程、芯片技术、自动化技术于一体,可谓*。在自动化上,还没有哪个单一创造能对制造业有如此大的影响。
丰富的通信端口,集成强大的以太网通信
西门子S7-200 SMART CPU 支持常用MicroSD卡(支持容量为4G,8G,16G,2G容量和 32G容量不支持 ):可用于程序传输,CPU固件更新,恢复 CPU 出厂设置。但要注意存储卡需要采用FAT32文件系统格式。
1、使用 MicroSD 卡传送程序
步骤一:用户在 CPU 上电且停止状态下插入存储卡;
注意:存储卡要用空卡,否则可能会更改 CPU 固件或者是内部存储的项目。
步骤二:下载源程序到CPU;
步骤三:在 Micro/WIN SMART 中,点击“PLC”->“编程存储卡” ,打开“编程存储卡”对话框,选择需要被拷贝到存储卡上的块,点击“编程”按钮;
步骤四:显示编程操作成功执行时从CPU上取下存储卡;
步骤五:将该MICROSD卡插入需要传送程序的CPU,上电后即可完成程序传送。
2、使用 MicroSD 卡更新固件
步骤一:用普通读卡器将固件文件“S7_JOB.S7S”和文件夹“FWUPDATE.S7S”拷贝到卡上;
步骤二:在 CPU 断电状态下将包含固件文件的存储卡插入 CPU ;
步骤三:给 CPU 上电,CPU 会自动识别存储卡为固件更新卡并且自动更新 CPU 固件。更新过程中RUN 指示灯和 STOP 指示灯以 2 HZ 的频率交替点亮。
步骤四:当 CPU 只有 STOP 灯开始闪烁,表示“固件更新”操作成功,从 CPU 上取下存储卡。
步骤五:给 CPU 重新上电,在 Micro/WIN SMART 中查看CPU固件版本;
3、恢复出厂设置
步骤一:使用Windows 系统自带的记事本软件创建一个只包含一行字符串“RESET_TO_FACTORY”的简单文本文件,保存为为 “S7_JOB.S7S”;
步骤二:在 CPU 断电状态下插入 MicroSD 卡,给 CPU 上电,CPU 会自动识别存储卡为恢复出厂设置卡并且自动恢复 CPU 出厂设置。
步骤三:当 CPU 只有 STOP 灯开始闪烁,表示“恢复出厂设置”操作成功。
PWM 和运动控制向导设置
为了简化您应用程序中位控功能的使用,STEP7- Micro/WIN SMART 提供的位控向导可以帮助您在几分钟内全部完成PWM、PTO 的组态。该向导可以生成位控指令,您可以用这些指令在您的应用程序中对速度和位置进行动态控制。
PWM 向导设置根据用户选择的PWM 脉冲个数,生成相应的PWMx_R UN 子程序框架用于编辑。
运动控制向导多提供3 轴脉冲输出的设置,脉冲输出速度从2 0 H z 到1 0 0 k H z 可调。
运动控制功能特点
o 提供可组态的测量系统,输入数据时既可以使用工程单位(如英寸或厘米),也可以使用脉冲数
o 提供可组态的反冲补偿
o 支持对、相对和手动位控模式
o 支持连续操作
o 提供多达32 组运动动包络,每组包络多可设置16 种速度
o 提供4 种不同的参考点寻找模式,每种模式都可对起始的寻找方向和终的接近方向进行选择
状态监控
在STEP 7- Micro/WIN SMART状态图中,可监测PLC 每一路输入/ 输出通道的当前值,同时可对每路通道进行强制输入操作来检验程序逻辑的正确性。
状态监测值既能通过数值形式,也能通过比较直观的波形图来显示,二者可相互切换。
另外,对PID 和运动控制操作,STEP 7- Micro/WIN SMART 通过专门的操作面板可对设备运行状态进行监控。
o 使用运动控制面板可以验证运动控制功能接线是否正确,可以调整组态数据并测试每个移动包络
o 显示位控操作的当前速度、当前位置和当前方向,以及输入和输出LED(脉冲LED 除外)的状态
o 查看修改在CPU 模块中存储的位控操作的组态设置
全新菜单设计
摒弃了传统的下拉式菜单,采用了新颖的带状式菜单设计,所有菜单选项一览无余,形象的图标显示,操作更加方便快捷。
双击菜单即可隐藏,给编程窗口提供更多的可视空间。
PLC基本工作原理浅析
PLC控制系统
PLC扫描的工作方法首要分三个阶段,即输入采样阶段、用户程序履行阶段和输出改写阶段。
1.输入采样阶段
在输入采样阶段,PLC以扫描方法顺次读入一切输入状况和数据,并将它们存入I/O映象区中的相应单元内。输入采样完毕后,转入用户程序履行和输出改写阶段。在这两个阶段中,即使输入状况和数据发生变化,I/O映象区中相应单元的状况和数据也不会改变。因此,如果输入的是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才干确保在任何情况下,该输入均能被读入。
2.用户程序履行阶段
在用户程序履行阶段,PLC总是按由上而下的次序顺次扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左面由各触点构成的控制线路,并按先左后右、先上后下的次序对由触点构成的控制线路进行逻辑运算;然后根据逻辑运算的成果,改写该逻辑线圈在体系RAM存储区中对应位的状况,或许改写该输出线圈在I/O映象区中对应位的状况,或许断定是否要履行该梯形图所规定的特别功用指令。即在用户程序履行过程中,只要输入点在I/O映象区内的状况和数据不会发生变化,而其他输出点和软设备在I/O映象区或体系RAM存储区内的状况和数据都有可能发生变化,而且排在上面的梯形图,其程序履行成果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被改写的逻辑线圈的状况或数据只能到下一个扫描周期才干对排在其上面的梯形图起作用。
3.输出改写阶段
当用户程序扫描完毕后,PLC就进入输出改写阶段。在此期间,CPU依照I/O映象区内对应的状况和数据改写一切的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。
输入/输出滞后现象
从PLC的工作过程,可以总结如下几个结论。
·以扫描的方法履行程序,其输入/输出信号间的逻辑关系存在着原理上的滞后。扫描周期越长,滞后就越严峻。
·扫描周期除了包括输入采样阶段、用户程序履行阶段、输出改写阶段三个首要工作阶段所占的时刻外,还包括体系管理操作占用的时刻。其中,程序履行的时刻与程序的长短及指令操作的杂乱程度有关,其他基本不变。扫描周期一般为毫微秒级。
·第n次扫描履行程序时,所根据的输入数据是该次扫描周期中采样阶段的扫描值X根据的输出数据有上一次扫描的输出值Y(n-1),也有本次的输出值Yn;所n送往输出端子的信号,即是本次履行全部运算后的终究成果Yn。
·输入/输出呼应滞后不只与扫描方法有关,还与程序设计组织有关。
北京西门子S7-1500PLC模块代理