| 注册| 产品展厅| 收藏该商铺

行业产品

当前位置:
金湖海联仪表有限公司>>涡街流量计>>液化石油气流量计>> 液化石油气流量计

液化石油气流量计

返回列表页
  • 液化石油气流量计
  • 液化石油气流量计
  • 液化石油气流量计
  • 液化石油气流量计
  • 液化石油气流量计
收藏
举报
参考价 面议
具体成交价以合同协议为准
  • 型号
  • 品牌 其他品牌
  • 厂商性质 生产商
  • 所在地 淮安市
在线询价 收藏产品

更新时间:2018-04-25 14:54:13浏览次数:521

联系我们时请说明是化工仪器网上看到的信息,谢谢!

同类优质产品

更多产品

产品简介

产地类别 国产 产品种类 容积
价格区间 面议 介质分类 气体
液化石油气流量计主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。无可动机械零件,因此可靠性高,维护量小。

详细介绍

   概述:

      液化石油气流量计主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。无可动机械零件,因此可靠性高,维护量小。仪表参数能长期稳定。涡街流量计采用压电应力式传感器,可靠性高,可在-20℃~+250℃的工作温度范围内工作。有模拟标准信号,也有数字脉冲信号输出,容易与计算机等数字系统配套使用,是一种比较*、理想的测量仪器。

 液化石油气流量计特点:

(1)涡街流量变送器的选择

在饱和蒸汽测量中采用VA型压电式涡街流量变送器,由于涡街流量计量程范围宽,因此,在实际应用中,一般插入式流量计主要考虑测量饱和蒸汽的流量不得低于涡街流量计的下限,也就是说必须满足流体流速不得低于5m/s。根据用汽量的大小选用不同口径的涡街流量变送器,而不能以现有的工艺管道口径来选择变送器口径。

(2)压力补偿的选择

由于饱和蒸汽管路长,压力波动较大,必须采用压力补偿,考虑到压力、温度及密度的对应关系,测量中只采用压力补偿即可,由于明通公司管道饱和蒸汽压力在0.3-0.7MPa范围,压力变送器的量程选择1MPa即可。

(3)显示仪表选择

显示仪表智能流量显示仪,具有稳压补偿、瞬时流量显示和累积流量积算功能。

(1)仪表系数的设定,设定的仪表 系数K可用下式表示:

K= 1000/K0

式中:K0为涡街发生体在出厂时标定的仪表常数,L/脉冲;k的单位为脉冲数/m3。

(2)压力补偿压力变送器的量程设定。

(3)压力、流量报警上限设定。

3、涡街流量计的安装

(1)涡街流量计尽量安装在远离振动源和电磁干扰较强的地方,振动存在的地方必须采用减振装置,减少管道受振动的影响。

(2)直管段的配置,前后直管段要满足涡街流量计的要求,所配管道内径也必须和涡街流量变送器内径*。

4、涡街流量计使用注意事项

尽量减少管道内汽锤对涡街发生体的冲击。振动较大而又无法消除时,不宜采用涡街流量计

 性能特点:

公称通径(mm)15,20,25,32,40,50,65,80,100,125,150,200,250,300,(300~1000插入式)
公称压力(MPa)DN15-DN200 4.0(>4.0协议供货),DN250-DN300 1.6(>1.6协议供货)
介质温度(℃)压电式:-40~260,-40~320;
电容式: -40~300, -40~400,-40~450(协议订货)
本体材料1Cr18Ni9Ti,(其它材料协议供货)
允许振动加速度压电式:0.2g      电容式:1.0~2.0g
精确度±1%R,±1.5%R,±1FS;插入式:±2.5%R,±2.5%FS
范围度1:6~1:30
供电电压传感器:+12V DC,+24V DC;变送器:+12V DC ,+24V DC;电池供电:3.6V
输出信号方波脉冲(不包括电池供电型):高电平≥5V,低电平≤1V;电流:4~20mA
压力损失系数符合JB/T9249标准 Cd≤2.4
防爆标志本安型:ExdⅡia CT2-T5隔爆型:ExdⅡCT2-T5      
防护等级普通型IP65     潜水型 IP68
环境条件温度-20℃~55℃,相对湿度5%~90%,大气压力86~106kPa
适用介质液体、气体、蒸汽
传输距离三线制脉冲输出型:≤300m,两线制4~20mA输出型:负载电阻≤750Ω

参比条件下涡街流量传感器工况流量范围表:

1.气体:常温常压空气,t=20℃,P=0.1MPa(绝压),ρ=1.205 kg/m3,υ=15×10-6 m2/s

2.液体:常温水,t=20℃,ρ=998.2kg/m3,υ=1.006

3.流量公式:Q=(3600*F)/K

口径

液体

气体

仪表系数

(mm)

测量范围
(m3/h)

输出频率
F范围(Hz)

切除

测量范围
(m3/h)

输出频率
F范围(Hz)

切除

K(脉冲数/m3)

15

0.4-4

40-400

15

3-12

280-1200

100

357058

20

0.8-8

33-330

10

6-30

230-1100

80

153400 144660

25

1.2-12

25-250

8

9-55

200-1200

70

72100

32

2-20

20-200

6

12-120

120-1200

60

36200 31196

40

3-30

15-150

6

20-200

100-1000

50

1884018203

50

5-50

13-130

5

30-300

80-800

40

9210

65

8-80

9.7-97

4

50-500

60-600

30

4356

80

12-120

7.7-77

3

80-800

50-500

25

2280

100

20-200

6.7-67

2

120-1200

40-400

20

1169

125

30-300

5.0-50

2

200-2000

35-350

20

623

150

40-400

3.8-38

1

300-3000

30-300

15

342.5

200

75-750

3.0-30

1

500-5000

20-200

10

143.2

250

110-1100

2.3-23

1

800-8000

16-160

5

73.6

300

160-1600

2.0-20

1

1100-11000

13-130

5

43.2

(300)

160-1500

5.5-87

2

1560-15600

85-880

45

189.7

(400)

180-3000

5.6-87

2

2750-27000

85-880

45

106

(500)

300-4500

5.6-88

2

4300-43000

85-880

45

67.49

(600)

450-6500

5.7-89

2

6100-61000

85-880

45

46.5

(800)

750-10000

5.7-88

2

1.1-11

85-880

45

26.38

(1000)

1200-1700

5.8-88

2

1.7-17

85-880

45

16.78

>(1000)

协议

 

协议

 

 

主要存在的问题主要有:

①指示长期不准;

②始终无指示;

③指示大范围波动,无法读数;

④指示不回零;

⑤小流量时无指示;

⑧大流量时指示还可以,小流量时指示不准;

⑦流量变化时指示变化跟不上;

⑧仪表K系数无法确定,多处资料均不*。

分析及解决方法:总结引起这些问题的主要原因,主要涉及到以下方面:

1、选型方面的问题。有些涡街传感器在口径选型上或者在设计选型之后由于工艺条件变动,使得选择大了―个规格,实际选型应选择尽可能小的口径,以提高测量精度,这方面的原因主要同问题①、③、⑥有关。比如,一条涡街管线设计上供几个设备使用,由于工艺部分设备有时候不使用,造成目前实际使用流量减小,实际使用造成原设计选型口径过大,相当于提高了可测的流量下限,工艺管道小流量时指示无法保证,流量大时还可以使用,因为如果要重新改造有时候难度太大.工艺条件的变动只是临时的。可结合参数的重新整定以提高指示准确度。

2、安装方面的问题。主要是传感器前面的直管段长度不够,影响测量精度,这方面的原因主要同问题①有关。比如:传感器前面直管段明显不足,由于FIC203不用于计量,仅仅用于控制,故目前的精度可以使用相当于降级使用。

3、参数整定方向的原因。由于参数错误,导致仪表指示有误.参数错误使得二次仪表满度频率计算错误,这方面的原因主要同问题①、③有关。满度频率相差不多的使得指示长期不准,实际满度频率大干计算的满度频率的使得指示大范围波动,无法读数,而资料上参数的不*性又影响了参数的zui终确定,zui终通过重新标定结合相互比较确定了参数,解决了这一问题。

4、二次仪表故障。这部分故障较多,包括:一次仪表电路板有断线之处,量程设定有个别位显示坏,K系数设定有个别位显示坏,使得无法确定量程设定以及K系数设定,这部分原因主要向问题①、②有关。通过修复相应的故障,问题得以解决。

5、四路线路连接问题。部分回路表面上看线路连接很好,仔细检查,有的接头实际已松动造成回路中断,有的接头虽连接很紧但由于副线问题紧固螺钉却紧固在了线皮上,也使得回路中断,这部分原因主要同问题②有关。

6、二次仪表与后续仪表的连接问题。由于后续仪表的问题或者由于后续仪表的检修,使得二次仪表的mA输出回路中断,对于这类型的二次仪表来说,这部分原因主要同问题②有关。尤其是对于后续的记录仪,在记录仪长期损坏无法修复的情况下,一定要注意短接二次仪表的输出。

7、由于二次仪表平轴电缆故障造成回路始终无指示。由于长期运行,再加上受到灰尘的影响,造成平轴电缆故障,通过清洗或者更换平轴电线,问题得以解决。

8、对于问题⑦主要是由于二次仪表显示表头线圈固定螺丝松,造成表头下沉,指针与表壳摩擦大,动作不灵,通过调整表头并重新固定,问题相应解决。

9、使用环境问题。尤其是安装在地井中的传感器部分,由于环境湿度大,造成线路板受潮,这部分原因主要同问题②、②有关。通过相应的技改措施,对部分环境湿度大的传感器重新作了把探头部分与转换部分分离处理,改用了分离型传感器,故善了工作环境,日前这部分仪表运行良好。

10、由于现场调校不好,或者由于调校之后的实际情况的再变动。由于现场振动平衡调整以及灵敏度调整不好.或者由于调整之后运行一段时间之后现场情况的再变动,造成指示问题、这部分原因主要同问题④、⑤有关。使用示波器,加上结合工艺运行情况,重新调整。

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~
二维码 意见反馈
在线留言