供货周期 | 现货 | 规格 | 6-FM-165 |
---|---|---|---|
货号 | 汇众蓄电池 | 应用领域 | 化工,石油,地矿,电子/电池,道路/轨道/船舶 |
主要用途 | UPS电源、直流屏、配电柜 |
产品分类品牌分类
-
Kaddiz蓄电池 STKPOWER蓄电池 凯鹰蓄电池 汤浅蓄电池 友联蓄电池 耐持蓄电池 风帆蓄电池 复华蓄电池 冠通蓄电池 ULTRACELL蓄电池 大华蓄电池 爱斯德蓄电池 日本NPC蓄电池 KMT蓄电池 ALLWAYS蓄电池 奥斯达蓄电池 科威达蓄电池 博牌蓄电池 OTP蓄电池 菲斯特蓄电池 施耐德蓄电池 赛力特蓄电池 凤凰蓄电池 克雷士蓄电池 戴思特DESTE蓄电池 力普蓄电池 太阳神蓄电池 京科蓄电池 稳定牌蓄电池 LIBOTEK蓄电池 ANJING蓄电池 CTP蓄电池 桑特蓄电池 AOPUERSEN蓄电池 九能蓄电池 美赛弗蓄电池 SUNSTK蓄电池 FENGSHENG蓄电池 LUOKI蓄电池 WANTE蓄电池 奥特多蓄电池 拉普特蓄电池 聚能蓄电池 环宇蓄电池 RGB蓄电池 康迪斯蓄电池 万松蓄电池 CTD蓄电池 淞森蓄电池 SAVTNK蓄电池 理士蓄电池 奥克蓄电池 CDP蓄电池 优比施蓄电池 KE蓄电池 大力神蓄电池 骆俊蓄电池 赛能蓄电池 ZHAOAN蓄电池 威博蓄电池 金兰盾蓄电池 DESTE蓄电池 诺华蓄电池 SUNEOM蓄电池 VAT蓄电池 Leert蓄电池 三瑞蓄电池 鸿贝蓄电池 欧姆斯蓄电池 蓄电池 BTB蓄电池 KEMA蓄电池 泰斯特蓄电池 科力达蓄电池 OTE蓄电池 强势蓄电池 其间蓄电池 STK蓄电池 新源蓄电池 双胜蓄电池 GEB蓄电池 电力士蓄电池 中达电通蓄电池 派士博电池 拓普沃蓄电池 莱力蓄电池 奥亚特蓄电池 KOKO蓄电池 银泰蓄电池 昕能蓄电池 匹西姆蓄电池 恒力蓄电池 嘉博特蓄电池 天畅蓄电池 叮东蓄电池 科电蓄电池 矩阵蓄电池 雷迪司蓄电池 利瑞特蓄电池 广隆蓄电池 OGB蓄电池 AOT蓄电池 欧帕瓦蓄电池 PNP蓄电池 贝利蓄电池 GMP蓄电池 金源星蓄电池 美阳蓄电池 SEALAKE蓄电池 圣润蓄电池 德利仕蓄电池 卓肯蓄电池 英瑞蓄电池 博尔特蓄电池 泰力达蓄电池 美洲豹蓄电池 NPC蓄电池 沃威达蓄电池 HOSSONI蓄电池 GOODEN蓄电池 宝星蓄电池 捷益达蓄电池 WTSIR蓄电池 商宇蓄电池 三科蓄电池 东洋蓄电池 SECURE蓄电池 三威蓄电池 蓝肯蓄电池 圣阳蓄电池 赛迪蓄电池 储霸蓄电池 金力神蓄电池 申盾蓄电池 山肯蓄电池 铭登蓄电池 阳光富力特蓄电池 博力特蓄电池 有利蓄电池 松下蓄电池 德洋蓄电池 日月明蓄电池 T-POWER蓄电池 KOZAR蓄电池 CRB蓄电池 宇力达蓄电池 宇泰蓄电池 CTM蓄电池 PEAK蓄电池 欧特保蓄电池 睿鑫蓄电池 BOLETAK蓄电池 森迪蓄电池 威扬蓄电池 艾佩斯蓄电池 TELONG蓄电池 RISSUN蓄电池 *蓄电池 万塔蓄电池 动力足蓄电池 汉韬蓄电池 安警蓄电池 乐珀尔蓄电池 九华蓄电池 天威蓄电池 持久动力蓄电池 吉辰蓄电池 万洋蓄电池 矿森蓄电池 通力源蓄电池 MOTOMA蓄电池 贝特蓄电池 希耐普蓄电池 驱动力蓄电池 捷隆蓄电池 金塔蓄电池 PSB蓄电池 威宝蓄电池 迈威蓄电池 普力达蓄电池 力得蓄电池 德富力蓄电池 越力蓄电池 力波特蓄电池 优特蓄电池 台诺蓄电池 科士达蓄电池 科华蓄电池 劲昊蓄电池 八马蓄电池 金悦城蓄电池 威马蓄电池 舶顿蓄电池 宝加利蓄电池 鸿宝蓄电池 J-POWER蓄电池 西力达蓄电池 普迪盾蓄电池 POWEROHS蓄电池 西力蓄电池 滨松蓄电池 KUKA Robot电池 海贝蓄电池 南都蓄电池 台洪蓄电池 DOYO蓄电池 BAYKEE蓄电池 圣普威蓄电池 索利特蓄电池 约顿蓄电池 DSTK蓄电池 WDS蓄电池 鑫星蓄电池 PT-9 C-PROOF信标蓄电池 AST蓄电池 力宝蓄电池 艾瑞斯蓄电池 TAICO蓄电池 YOUTOP蓄电池 USAOK蓄电池 日升蓄电池 贝朗斯蓄电池 双登蓄电池 安全(SECURE)蓄电池 恩科蓄电池 斯诺迪蓄电池 赛特蓄电池 G-BATT蓄电池 万特蓄电池 万安蓄电池 MSF蓄电池 北宁蓄电池 PEVOT蓄电池 万心蓄电池 FORBATT蓄电池 富山蓄电池 圣能蓄电池 光盛蓄电池 泽源蓄电池 昊能蓄电池 MAX蓄电池 HE蓄电池 HTB蓄电池 NCAA蓄电池 NPP耐普蓄电池 奔放/BOLDER蓄电池 汇众蓄电池
产品简介
详细介绍
汇众蓄电池6-FM-165 12V165AH尺寸重量 汇众蓄电池6-FM-165 12V165AH尺寸重量
上海汇众蓄电池6-FM-165、嘉定汇众蓄电池6-FM-165、天津汇众蓄电池6-FM-165、和平区汇众蓄电池6-FM-165、重庆汇众蓄电池6-FM-165、万州汇众蓄电池6-FM-165、安徽汇众蓄电池6-FM-165、合肥汇众蓄电池6-FM-165、福建汇众蓄电池6-FM-165、福州汇众蓄电池6-FM-165、甘肃汇众蓄电池6-FM-165、兰州汇众蓄电池6-FM-165、广西汇众蓄电池6-FM-165、南宁汇众蓄电池6-FM-165、贵州汇众蓄电池6-FM-165、贵阳汇众蓄电池6-FM-165、海南汇众蓄电池6-FM-165、河北汇众蓄电池6-FM-165、石家庄汇众蓄电池6-FM-165、唐山汇众蓄电池6-FM-165、秦皇岛汇众蓄电池6-FM-165、河南汇众蓄电池6-FM-165、郑州汇众蓄电池6-FM-165、安阳汇众蓄电池6-FM-165、黑龙江汇众蓄电池6-FM-165、湖北汇众蓄电池6-FM-165、武汉汇众蓄电池6-FM-165、湖南汇众蓄电池6-FM-165、长沙汇众蓄电池6-FM-165、吉林汇众蓄电池6-FM-165、长春汇众蓄电池6-FM-165、江苏汇众蓄电池6-FM-165、南京汇众蓄电池6-FM-165、江西汇众蓄电池6-FM-165、南昌汇众蓄电池6-FM-165、辽宁汇众蓄电池6-FM-165、鞍山汇众蓄电池6-FM-165、内蒙古汇众蓄电池6-FM-165、宁夏汇众蓄电池6-FM-165、青海汇众蓄电池6-FM-165、山东汇众蓄电池6-FM-165、济南汇众蓄电池6-FM-165、青岛汇众蓄电池6-FM-165、山西汇众蓄电池6-FM-165、太原汇众蓄电池6-FM-165、陕西汇众蓄电池6-FM-165、西安汇众蓄电池6-FM-165、四川汇众蓄电池6-FM-165、成都汇众蓄电池6-FM-165、西藏汇众蓄电池6-FM-165、新疆汇众蓄电池6-FM-165、云南汇众蓄电池6-FM-165、浙江汇众蓄电池6-FM-165、广东汇众蓄电池6-FM-165、
据电池的某些性能参数无需放电就可预知电池的容量或荷电态,是电池行业和电化学工作者们长期以来关注的问题,研究电池内阻和荷电态之间的关系是其中之一。对开口式铅蓄电池而言,根据电解液密度来判定电池荷电态已是*的了;但对阀控式密封铅蓄电池来说,这种办法却无法使用。近几年来,国内外一些电信设备生产厂家和论文作者,根据密封铅蓄电池电导(或内阻)跟容量或荷电态之间的某种相关关系,提出用电池电导测试仪在线检测电池电导,来推断电池的放电容量,预测电池使用寿命。
仔细分析已有的研究试验结果和现场统计数据可以看出,密封铅蓄电池电导与容量之间的这种相关关系是受一定条件限制的,不适用于在线的合格的电池,因而用密封铅蓄电池的电导值去推断放电容量的做法并不可取。
1 开口式铅蓄电池交流阻抗特性
早在20年以前就有文献[1~2]报导了开口式铅蓄电池交流阻抗跟电池荷电态之间关系的研究结果。所用的电池是75Ah的铅蓄电池,选取的交流信号频率f=10~100Hz。这是由于f>200Hz时电池的感抗太大,f<10Hz时要求测量用的电容太大。
根据交流阻抗测试结果得出,铅蓄电池阻抗主要受电荷转移过程,即活化极化所控制,同时受扩散过程的干扰,即所测得的电池内阻值中除了欧姆内阻和活化极化内阻之外,还包含了其数值随测量时间或信号频率而变化的浓差极化内阻。
图1示出电池的等效并联电阻Rp、等效串联电阻Rs和阻抗模数|Z|随电池荷电态的变化。可以看出,电池的荷电态在50%以上时,Rp、Rs和Z几乎是不变的,只是荷电态在50%以下时才迅速增加,这与我们早年得到的研究结果[3]相*。
t7501.gif (2191 字节)
图1 Rp、Rs和|Z|对荷电态关系
2 VRLA交流阻抗特性
文献[4]报导了对6V/4Ah小型密封铅蓄电池交流阻抗特性的测量结果。所用的交流信号幅度为10mV,频率范围为0.05Hz~10kHz。由于铅蓄电池交流阻抗中有感抗存在,不能采用在复数平面图中相应虚部为零时阻抗实部值作为电池内阻值,而采用电池阻抗模变化zui小的高频区(0.1kHz~10kHz)中阻抗实部的平均值作为电池内阻,此时浓差极化的干扰就相对小一些。
图2给出了该电池内阻与剩余容量的关系。可以看出,在剩余容量高于40%的区间内,电池内阻几乎没有变化,而且几乎不受放电电流的影响;当剩余容量小于40%时,电池内阻却明显增大,而且放电电流越小,电池内阻增加越快。
t7502.gif (2187 字节)
图2 内阻与剩余容量关系
3 VRLA的电导测试
文献[5]介绍了用电池电导测试仪对GFM—840L型阀控式密封铅蓄电池内阻的测试结果。该电池全充电后进行10h率放电,其内阻变化如图3所示。可以看出,在放电过程前期(0~4h),电池的内阻可以认为没有变化,待放电后期(此时电池容量已小于50%),电池内阻就明显增大。
t7503.gif (1172 字节)
图3 GFM-840型VRLA内阻随变化曲线
从以上3种情况下不同时期的不同作者,采用不同的方法对不同型式的铅蓄电池内阻测试的结果可以看出:不论是用交流阻抗测试仪还是电池电导测试仪,所用的交流信号频率如何,电池型式(开口的和密封的)、容量和工作状态如何,虽然测得的铅蓄电池内阻值有差异,但它们却有一个共同点,即铅蓄电池的内阻(或电导)在荷电态高于50%时几乎是没有变化的;只有在荷电态低于50%时电池的内阻才会迅速升高。这就是说,当铅蓄电池的荷电态在50%以上时,它的电导跟容量之间不存在相关关系,无法根据电池的电导值去推断电池的放电容量。
4 VRLA电导与放电时间统计结果
有关资料[6]介绍了国外用Midfronic Celltron and Midtron电导测试仪对VRLA的测试和统计结果。被测的电池容量范围为200~1000Ah,电池系统由3组并联(每组24只电池)至18组并联,电池荷电态为0~100%。
图4表示具有不同初始电导的225Ah电池用42A电流放电至1.75V时的放电曲线。按照一般VRLA放电性能推算,新的225Ah电池用42A放电至1.75V的时间约为260~270min,即图4的曲线1相当于新电池的放电曲线。将图中各条曲线所示的数据稍加处理,可以得到表1所示的结果。
t7504.gif (1972 字节)
图4 225Ah的VRLA用42A放电曲线
表1 不同初始状态下的电池放电特性
电池编号 1 2 3 4 放电前电池电导/S 849 517 388 281 放电时间/min 270 110 100 25 放电容量/Ah 189 77 70 18 占额定容量比例/% 100 40.7 37.0 9.5 占zui大电导值比例/% 100 60.9 45.7 33.1
按照目前电导仪的使用说明,有人主张以电池容量达额定值80%时的电导值作为门限值,也有人主张以zui高电导值的80%作为门限值(事实上这两个数值是不同的),低于该值的电池就是落后电池。从表1数据可以看出,不论如何规定,只有曲线1所代表的电池是合格的电池。根据YD/T799—1996(通信用阀控式密封铅蓄电池技术要求和检验方法)的规定,电池的放电容量低于额定值80%就算失效,因而曲线2~4所代表的电池均为失效电池。既然这种电池是不允许继续使用的,那么如此描绘失效电池的放电曲线有多大的实际意义呢
图5示出168个1000Ah电池(7组)用263A放电至1.80V的放电时间跟电池电导之间的关系的统计结果。从这些数据点的分布情况来看,似乎电池的电导跟放电时间存在线性相关的趋势,但仔细一分析则会发现存在问题。
t7601.gif (2146 字节)
263A放电至1.80V的时间
图5 放电容量与电导的关系
按照VRLA一般放电性能,1000Ah的电池用263A放电至1.80V,其放电时间应不低于170min,即放电容量应当为745Ah,则容量达到额定值80%的电池的放电时间应当为136min。从图5数据点位置来看,放电时间在136~170min之间的电池的电导值在2.4~3.1kS范围之内,但电池容量跟电导之间看不出有什么相关关系,这跟本文前面所述的用交流阻抗法或电导仪测试的结果是*的。
虽然将放电容量为0~100%的电池全部统计进去,似乎电导与容量之间存在线性相关关系(尽管其误差非常大);但必须指出,合格的在线的电池容量都必须不低于额定值80%,达不到这一要求的电池是不准在线使用的,因而根据电导仪测得的VRLA电导值去预测电池的放电容量是危险的。
6 结论
a.不论是开口式铅蓄电池还是阀控式密封铅蓄电池,当电池荷电态高于50%时,其电导(或内阻)基本上是没有变化的;电导与容量之间不存在相关关系。
b.虽然将容量范围在0~100%内的全部电池进行统计,电池电导与容量之间出现了误差很大的线性相关关系,但这其中的电池绝大部分已属不准使用的失效电池。
c.用VRLA电导值去推断在线使用的电池容量值是欠妥的;但从电导值的变化去推测VRLA是否失水的做法是可取的。