搜全站
   联系电话

   86-021-56079729

上海五铃光电科技有限公司

10
  • 2024

    09-25

    短波红外相机的原理说明

    短波红外相机是利用短波红外辐射进行成像的一种红外成像设备。它的原理基于热辐射现象和红外辐射与物体之间相互作用的特性。热辐射现象是指所有物体都会发出电磁波,而这些电磁波的频率和强度与物体的温度相关。物体的温度越高,发出的电磁波频率越高,强度越红外辐射是指位于可见光和微波之间的电磁波,其频率范围一般从1微米到1000微米。短波红外相机主要利用35微米范围内的红外辐射进行成像。在这个波段内,大气对红外辐射的吸收很小,因此在大气透明窗口范围内使用短波红外相机可以获取较好的成像效果。短波红外相机工作时,用
  • 2024

    09-23

    如何选择适合自己需求的偏振相机?

    在选择适合自己需求的偏振相机时,需要考虑多个方面的因素,以确保相机能够满足特定的应用需求和工作环境。以下是一些关键的考虑因素:一、明确应用场景首先,明确偏振相机将用于哪些具体的应用场景。不同的应用场景对相机的性能要求可能大不相同。例如,在工业自动化中,可能需要高分辨率和高速成像能力;在环境监测中,可能更注重相机的稳定性和长期工作的可靠性。二、技术参数1.分辨率与像素:根据应用需求选择合适的分辨率和像素数。高分辨率的相机能够捕获更细腻的图像细节,适用于需要高精度测量的场景。2.光谱范围:了解相机覆
  • 2024

    07-01

    深入解析超声成像显微镜的工作原理与应用

    超声成像显微镜,作为一种利用超声波技术来揭示物体内部微观结构和性质的先进设备,其工作原理与应用广泛。一、工作原理超声成像显微镜的工作原理基于超声波的传播和反射。首先,设备通过换能器发出超声波,这些超声波经过声透镜聚焦后,被照射到待测样品上。当超声波遇到样品内部的不同结构或缺陷时,会发生反射、散射或透射等现象。反射回来的超声波被接收后,通过声透镜汇聚在压电接收器上,并转化为电信号。这些电信号经过放大和处理后,最终被转化为图像,显示在荧光屏上。二、应用生物医学领域:超声成像显微镜在生物医学领域的应用
  • 2024

    06-21

    植物叶绿素荧光成像系统应用

    植物叶绿素荧光成像系统采用箱体式外观,内置多波段LED用于测量光、饱和脉冲及反射率测量。基于机器视觉成像原理进行叶绿素荧光成像,从而计算植物生长、胁迫,育种,突变株筛选相关等科学研究;滤光系统允许叶绿素荧光波段光线进入传感器并成像。不同于传统的只能做点状测量的光纤式荧光仪,标准版系统成像面积高达20x20cm,可以同时对多个样品、整个叶片或小尺寸植株进行荧光成像。高功率LED提供饱和脉冲,强度≧3000μmol/m2/sPAR。同时提供多种不同灯板选配:385nm紫外,455nm蓝色,530nm
  • 2024

    06-04

    光栅光谱仪:原理、应用与技术细节

    光栅光谱仪是一种精密的科学仪器,它基于光的色散原理,将复合光分解为不同波长的光谱线。以下是关于光栅光谱仪的原理、应用及技术细节的简要介绍。原理光栅光谱仪利用光栅作为分光元件,通过衍射效应将复合光按波长分散成不同角度的单色光。具体来说,当光通过光栅时,不同波长的光会以不同的角度发生偏转,从而在光谱仪上形成连续的光谱。探测器随后测量各波长光的强度,并转化为电信号输出,形成光谱图。应用光栅光谱仪的应用十分广泛,包括环境监测、科学研究、医学诊断、化学分析、物理研究、工业生产及食品检测等领域。例如,在环境
  • 2024

    05-09

    无损检测的新选择:近红外光谱仪技术解析

    在无损检测领域,近红外光谱仪以其的优势成为了科研人员和技术人员的新选择。近红外光谱仪的工作原理基于物质在近红外光谱区域的吸收、反射和透射特性,通过分析这些特性,可以实现对物质成分、结构和性质的快速、准确检测。近红外光谱仪技术具有非接触、无损、快速、准确等特点,特别适用于对液体、固体和气体等多种样品的分析。其非接触式检测方式避免了传统检测方法中可能引入的污染和损伤,同时,近红外光谱仪的快速响应时间和高分辨率使其能够在短时间内获取大量数据,提高了检测效率。此外,近红外光谱仪还具有广泛的应用范围。在农
  • 2024

    04-08

    光栅光谱仪技术原理与应用解析

    光栅光谱仪作为一种重要的光学测量仪器,在科学研究、工业生产以及环境监测等领域具有广泛的应用。其技术原理和应用价值对于提升测量精度、拓展应用领域具有重要意义。光栅光谱仪的技术原理主要基于光的衍射和干涉现象。当光线通过光栅时,由于光栅的周期性结构,不同波长的光会发生不同程度的衍射和干涉,从而形成一系列的光谱线。通过测量这些光谱线的位置和强度,我们就可以得到被测量物质的光谱信息,进而分析其成分、结构和性质。光栅光谱仪的应用非常广泛。在科学研究领域,它可用于研究物质的光学性质、化学反应动力学等;在工业生
  • 2024

    03-08

    光栅光谱仪:原理、构造与应用全解析

    光栅光谱仪是一种重要的科学仪器,它基于光的干涉和衍射原理,将复杂的光成分分解为光谱线,从而进行光信息的分析和研究。光栅光谱仪的核心在于光栅的使用。光栅是在平整的玻璃或金属材料表面刻画出一系列平行、等距的刻线,这些刻线会对入射光产生干涉和衍射效应。当光线通过光栅时,相邻刻线产生的光程差导致光波发生干涉,而光栅上的每个刻线都成为一个点光源,产生一系列衍射波,这些衍射波相互干涉,形成明暗相间的干涉条纹,即光谱。在构造上,光栅光谱仪通常包括光源、入射口、光栅、狭缝和检测器等部分。光源提供光信号,入射口将
  • 2024

    02-26

    强化光谱仪产品阵容,可见光&近红外新型光谱仪推出!

    为了持续强化产品阵容以全面满足各种量测需求,新推出可对应180-1100nm波长范围的高感度光谱仪,SmartEngine智能引擎12号:包含SE2120光谱色彩参数直接算取以及SE4120高效能快速传输两种型号与对应910-2200nm波长范围、二阶致冷的近红外光谱仪Sidewinder响尾蛇9系列3号(SW2930)。SmartEngine智能引擎12号采用滨松1024pixelsCMOS高感度感测器,其PixelSize是本公司主力机种SmartEngine智能引擎3号(SE2030、SE
  • 2024

    02-22

    便携式高光谱仪器的原理是什么?

    便携式高光谱仪器的原理主要基于物质对光的吸收、反射和发射特性。它通过捕捉并记录物体的光谱信息,提供详细的数据和图像。以下是其工作原理的详细解释:吸收和反射特性:物质对光的吸收和反射特性是便携式高光谱仪器工作的基础。当光照射在物体表面时,一部分光会被物体吸收,而另一部分光会被反射。每种物质都有其的吸收和反射光谱,这些光谱包含了物质的结构、成分和状态等信息。光谱成像:便携式高光谱仪器通过连续测量物体在不同波段下的光谱信息,获取物体的光谱特征。它能够在可见光、近红外线、红外线以及其他电磁波谱段上进行测
  • 2024

    02-15

    短波红外相机能够提供物体温度分布的信息

    短波红外相机是一种高级红外成像设备,利用短波红外辐射进行拍摄和图像处理。它在各个领域都有广泛的应用,包括军事、安防、工业检测、医学等。原理是基于物体发出的红外辐射。短波红外辐射波长范围为1.0-3.0微米,与可见光相比,它能够穿透雾霾和烟尘,具有更好的透过性。短波红外相机通过接收和处理被物体反射或散射的红外辐射,生成热图或热图像。这些热图可以显示物体表面的温度分布情况,从而提供了非常有价值的信息。该相机具有许多特点。首先,它具有高灵敏度和高分辨率,能够清晰地显示物体的温度差异。其次,它具有快速响
  • 2024

    02-02

    多光谱相机应用于环境监测和农业领域

    随着科技的发展,多光谱相机已成为一个重要的工具,广泛应用于环境监测和农业领域。这种高科技相机能捕捉到可见光范围以外的光线,为我们的研究和应用提供了丰富的数据和深入的见解。一、环境监测领域环境监测是保护和管理环境的关键。多光谱相机在此领域的应用,主要表现在以下几个方面:大气污染监测:能够捕捉到不同波长的光线,从而分析出大气的成分。通过分析反射回来的光线,可以识别出颗粒物、二氧化氮、二氧化硫等污染物的存在和分布情况。这有助于环境管理部门及时采取措施,减少污染。水体监测:能够分析水体的清澈度、藻类生长
  • 2024

    01-21

    微透镜阵列可以实现高分辨率和高帧率的成像

    在现代光学技术中,微透镜阵列作为一种先进的光学元件,正发挥着越来越重要的作用。这种小型化的透镜阵列具有广泛的应用前景,尤其在成像、光通信、生物检测等领域中,表现出显著的优势。微透镜阵列是由一系列微型透镜组成的阵列,每个透镜都可以独立地改变焦距或方向。这种特性使得阵列在复杂的光学系统中具有高度的灵活性和可调性。与传统的透镜相比,它具有更小的体积、更高的集成度以及更低的制造成本。在成像领域,可以实现高分辨率和高帧率的成像。由于其微型化特性,可以将整个光学系统集成到一个小型设备中,例如手机摄像头、监控
  • 2024

    01-12

    哪些领域用到高灵敏度相机

    高灵敏度相机在许多领域都有广泛的应用,以下是具体领域的举例:天文观测:由于天文学中观测目标的信号通常非常微弱,需要使用高灵敏度相机来捕捉和记录这些信号。这样的相机常被用于深空天体观测、星系和行星研究等。生物医学研究:在生物学和医学领域,荧光和发光技术是重要的研究手段。高灵敏度相机能够捕捉到这些微弱的信号,从而帮助科学家们观察细胞和分子的结构和功能。此外,在医疗诊断中,如荧光内窥镜和荧光光谱分析等也需用到高灵敏度相机。安全监控:在安全监控领域,高灵敏度相机常被用于检测微弱的光信号,如火焰、气体泄漏
  • 2024

    01-11

    太赫兹光谱成像的主要用途

    太赫兹光谱成像是一种新兴的无损检测技术,利用太赫兹波段的电磁波进行成像和分析。相比传统的光学成像技术,它具有许多优势,如穿透力强、对物质成分敏感等,因此在多个领域有广泛的应用。以下是太赫兹光谱成像的主要用途。1.材料表征与质量控制:可以用于材料的表面和内部结构分析。例如,在制药行业中,可以利用成像技术观察药片的分布情况、检测药物的含量和均匀性,从而实现对药品质量的控制。此外,还可应用于纸张、塑料、涂层等材料的质量控制和缺陷检测。2.安全检查与防伪:可以穿透常见的包装材料,如纸张、塑料、布料等,对
  • 2023

    12-21

    可见光光谱仪的校准与数据处理技术

    可见光光谱仪是一种用于测量可见光波段电磁辐射的仪器,广泛应用于物理、化学、生物等领域。校准和数据处理是保证仪器测量准确性的关键步骤。本文将介绍可见光光谱仪的校准和数据处理技术。一、校准校准是确保可见光光谱仪测量准确性的重要步骤。校准包括波长校准和强度校准。波长校准:波长校准是确定光谱仪的波长刻度的准确性。通常采用标准物质如汞灯进行校准,通过比较标准物质的光谱与仪器测得的光谱,调整仪器刻度,使其与标准物质一致。强度校准:强度校准是确定光谱仪的响应度,即不同波长下的光强输出。通常采用标准物质如标准灯
  • 2023

    12-11

    科学研究与应用:多光谱相机的多样性探索

    多光谱相机是科学研究和应用领域中的一种重要工具,它的成像技术可以捕捉到不同波段的光谱信息,为科学家们提供了更加丰富、全面的图像数据。在环境保护、农业、医学、空间探索等领域,它的应用不断拓展,展现出其巨大的潜力和价值。一、环境监测与保护在环境监测方面具有广泛的应用。例如,通过遥感技术,可以实时监测地球表面的变化,包括土地利用、植被分布、水体污染等情况。多光谱相机能够捕捉到这些信息,为环境保护决策提供科学依据。此外,在空气质量监测中,也被用于检测大气中的有害物质,为防治空气污染提供数据支持。二、农业
  • 2023

    12-11

    超声成像显微镜的用途是什么?

    超声成像显微镜是一种先进的科学仪器,可以在微观尺度上揭示物体的内部结构和性质。它的用途广泛,涉及多个领域,包括生物学、医学、微电子学和材料科学等。在生物学和医学领域,超声成像显微镜可以用于活体观察和研究。由于不需要对样品进行破坏或染色,超声成像显微镜可以用于观察生物组织的内部结构和功能。这对于研究疾病的发展和治疗效果具有重要意义,可以帮助科学家们更好地了解生物体的生理机制和疾病过程。在微电子学领域,超声成像显微镜可以用于对大规模集成电路进行非破坏性观察。通过反射式超声成像显微镜,可以观察到不同层
  • 2023

    12-06

    光栅光谱仪在环保领域有哪些应用?

    光栅光谱仪在环保领域的应用主要包括以下几个方面:大气污染监测:光栅光谱仪可以用于监测大气中的各种污染物,如二氧化硫、氮氧化物、臭氧、挥发性有机物等。通过对这些污染物的光谱特征进行分析,可以确定污染物的种类和浓度,从而对大气污染进行有效的监测和治理。水质监测:光栅光谱仪可以用于监测水体中的各种污染物,如重金属、有机物、氨氮、磷酸盐等。通过对这些污染物的光谱特征进行分析,可以确定污染物的种类和浓度,从而对水质进行有效的监测和治理。土壤和岩石污染监测:光栅光谱仪可以用于监测土壤和岩石中的各种污染物,如
  • 2023

    11-25

    拉曼光谱仪在其他领域还有哪些应用?

    拉曼光谱仪是一种强大的工具,在多个科学领域中都有广泛的应用。除了在材料科学和宝石学领域的应用外,它还在生物学、化学、物理学和环境科学等领域发挥着重要作用。在生物学领域,拉曼光谱仪被用于研究生物大分子的结构和动态。例如,它可用于分析蛋白质的结构和折叠,或者研究生物细胞和组织的内部组成。拉曼光谱技术也被用于分析生物分子的相互作用,如药物与蛋白质的结合,或者DNA的突变等。在化学领域,拉曼光谱仪可用于研究化学反应的动力学和机理。通过测量反应过程中的拉曼光谱变化,可以获得关于反应进程的深入信息,例如反应
12345共8页145条记录