利用腔衰荡系统探测C2H2在1520nm处的吸收峰 - 筱晓光子AOL实验室⑧
在上一期,我们成功测量了10ppm的CH4气体在1653.7nm的吸收峰,但是用空腔衰荡时间5.864us,计算得到1550nm的高反镜在1653.7nm只有99.97%的反射率,不足以体现这个系统的性能。所以,我们更换了一个1520nm的C2H2吸收峰去探测。下图为探测C2H2衰荡信号时的实拍图。系统结构和上期测CH4气体相同,只是更换了1550nm的AOM,同时尝试用自制的激光器驱动替代Thorlabs的ITC4005驱动。
首先,我们在HITRAN数据库中比对C2H2和H2O的吸收峰,寻找一个几乎不受水峰干扰乙炔吸收峰。尽管水峰在这个波长范围的吸收系数比乙炔少了好几个数量级,但是在腔衰荡系统中都测到了很强的吸收峰,困扰了我们很多天,最后才排查出是水峰的影响。最后,选择了6578.56 cm-1(1520nm)作为测试点,这也是局限于我们的DFB激光器的波长调谐范围,无法调到左边那个更好的吸收峰。
同时对上一期的腔衰荡系统结构示意图做出更正: 腔两端的两个通气口是用于气体进出,中间的端口是用于连接温度传感器或压力传感器的,而非排气口,更正完的示意图如下。
通入足量C2H2后,我们先TDLAS的方法确定了该吸收峰的大致位置,此时激光器的温度调节为36.5℃,电流扫描范围为36mA~48mA。然后以1mA为测量间隔,分别测量该电流区间内的腔衰荡时间,得到吸收曲线如下图所示,吸收点的衰荡时间为9.8us。
开腔静置两天后,在吸收点的位置再测一次衰荡时间,得到的结果为27.78us,计算得到腔镜反射率为99.994%,如下:
产品图片 | 产品名称 | 产品链接 |
模块式激光控制器 (0~225mA 电压 2.5V@80mA) | http://www.microphotons。。cn/?a=cpinfo&id=523 | |
1520nm DFB Laser diode for C2H2 Sensing | http://www.ld-pd。。com/?a=cp3&id=327 | |
1550/1650nm 单模/保偏光纤声光调制器 | http://www.microphotons。。cn/?a=cp3&id=217 | |
超光滑超高反射率(>99.99%) 反射镜 1550nm(可定制) | http://www.microphotons。。cn/?a=cpinfo&id=1905 | |
铟镓砷(InGaAs)放大型光电探测器 800-1700nm (140MHz) | http://www.microphotons。。cn/?a=cpinfo&id=2169 | |
![]() | 可调焦非球面光纤准直器 (焦距4.5/7.5/11mm) | http://www.microphotons。。cn/?a=cpinfo&id=2328 |
相关产品
免责声明
- 凡本网注明“来源:化工仪器网”的所有作品,均为浙江兴旺宝明通网络有限公司-化工仪器网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:化工仪器网”。违反上述声明者,本网将追究其相关法律责任。
- 本网转载并注明自其他来源(非化工仪器网)的作品,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。
- 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。