产品推荐:气相|液相|光谱|质谱|电化学|元素分析|水分测定仪|样品前处理|试验机|培养箱


化工仪器网>技术中心>专业论文>正文

欢迎联系我

有什么可以帮您? 在线咨询

全球疫情啼不住,科研已过万重山

来源:QUANTUM量子科学仪器贸易(北京)有限公司   2021年05月21日 11:14  

2020年疫情发生以来对社会生活和发展都带来了巨大影响。然而在如此恶劣的环境下全球的科研工作者不仅没有停下前进的脚步,而且国内外很多课题组都取得了不错的科研成果。本文我们将概述疫情期间在低温光学相关实验方面几个代表性科研成果。

 

1、三角晶格反铁磁性材料Fe1/3NbS2中的三态向列性

 

将反铁磁体(AFMs)应用于自旋电子学是近年来材料学研究的重点课题之,它有望获得更快响应、更低阈值电流和更小尺寸的新型低能耗电子器件。

 

加州大学物理系的Joseph Orenstein团队采用空间分辨光学偏振测量技术对Fe1/3NbS2晶体进行变温测量,在反铁磁奈尔温度以下发现晶体中出现了三态向列性畴。作者通过光热泵浦测量了向列性畴对温度的敏感性。这发现说明反铁磁材料在类液晶方面具有定的应用前景,对于新型材料的开发具有重要意义。

 

 

热调制偏振旋转测量的坐标图与双折射图。a, 样品不同区域的δϕ表示样品旋转对称性的破缺;b, 500 μm*900 μm 区域的双折射图,显示了三个不同的向列性畴,其光学轴彼此夹角为120度[1]

 

从实验角度来讲,进行空间分辨的高精度变温光学偏振测量对于低温设备要求较为苛刻。,低温设备应具有超低震动和超高的位置稳定性;其次,设备应具有较近的工作距离,以方便进行高数值孔径测量。在本篇文章中作者强调实验采用了Montana Instruments生产的光学恒温器,系统配备了近工作距离窗口。用此光学恒温器作者非常方便的搭建了室温物镜的光学测量系统,得到了数据质量很好的实验结果。

 

Montana光学恒温器系统,为低温光学实验设计的低温设备,上图为S50型恒温器系统

 

2、同位素碳化硅中单个核自旋的纠缠和控制

 

固态材料中的核自旋既是消相干的原因也是自旋比的来源。在这项工作中,芝加哥大学David D. Awschalom通过在碳化硅(SiC)中控制单个的29Si核自旋,在个具有光学活性的空位自旋和强耦合的核寄存器之间创造了个纠缠态。此外,作者还展示了如何用SiC的同位素加工来实现弱耦合核自旋的控制,并提出了种First-Principles计算方法来预测至同位素分数,使可用核存储器的数量至大化。总的来说,作者展示了在固态系统中控制核环境的重要性,实现了工业尺度材料中的单光子发射器与核寄存器的连接。

 

初始化、控制和纠缠强耦合核自旋,详细内容请参考原文[2]

 

该工作中对于单光子的观测,作者使用了Montana Instruments生产的S100型光学恒温器。实验中采用了数值孔径0.85的物镜与单模光纤耦合的超导纳米线单光子探测器。S100系统较大的样品空间为该实验提供了稳定的低温环境。S100型光学恒温器是为中等尺寸低温环境需求而门设计的型号,相对于S50型恒温器可以容纳更多的光学组件和装置,可以实现较为复杂的光学实验方案

 

Montana S100型光学恒温器,可满足更复杂的实验方案,可集成物镜

 

3、扭曲WSe2/WSe2双层膜中电调控自旋谷动力学

 

不同于传统材料,范德华异质结材料中的扭转自由度为电学和光学性质的研究提供了个新的工具。哈佛大学物理系的Mikhail D. Lukin与Hongkun Park团队证明了在过渡金属二硫系化合物双层膜中扭转两层材料的角度可以改变两层中自旋谷的动量排列,从而实现对自旋谷性的控制。具体来说,在扭曲WSe2/WSe2双层膜中作者观察到层间激子在零电场和磁场下表现出高度的圆偏振(DOCP>60%)和较长的谷寿命(>40 ns)。并且通过静电掺杂可以对谷寿命实现超过3个数量的调控,也可实现DOCP从n掺杂状态的80%到p掺杂状态的5%的调节。这些结果为可调手性光-物质相互作用开辟了新的途径,使用谷自由度制造新器件方案成为可能。

 

 

通过扭曲来改变能带结构a,布里渊区对齐和扭曲的侧视图;b,装置的示意图和光学图片;c,不同扭转角度样品偏振PL光谱图,X1为层间激发,X0为层内激发;d,由c图计算得到的PL光谱偏振角度[3]

 

本工作中研究人员基于Montana光学恒温器使用0.75数值孔径的物镜搭建了共聚焦显微镜系统,并使用该系统完成了高精度的光学测量。Montana恒温器具有非常好的开放性和兼容性,研究人员几乎可以忽略恒温器对实验的影响,可以直接将室温的实验方案平移到低温环境中

 

Montana光学恒温器具有十分广泛的兼容性可以满足各种光学测量,上图为变温拉曼系统举例

 

2020年至今,国内外的Montana光学恒温器用户发表了数篇论文,之前我们已报道过我国南京大学奚啸翔教授发表在nature[4, 5]期刊上的变温拉曼工作,同时我们还发现arXiv网站有数十篇文章,希望这些文章能够早日正式刊发。看来肆虐的疫情也不能阻挡Montana光学恒温器用户的科研步伐。正所谓,科研只争朝夕间,仪器在手莫等闲,全球疫情啼不住,科研已过万重山。

 

参考文献:

[1]. Arielle Little et al, Three-state nematicity in the triangular lattice antiferromagnet Fe1/3NbS2Nature Materials 19, 1062–1067 (2020)

[2]. Alexandre Bourassa et al, Entanglement and control of single nuclear spins in isotopically engineered silicon carbide, Nature Materials 19, 1319–1325(2020)

[3]. Giovanni Scuri et al, Electrically Tunable Valley Dynamics in Twisted WSe2/WSe2 Bilayers, Physical Review Letters, 124, 217403 (2020)

[4]. Guowen Yuan et al, Proton-assisted growth of ultra-flat graphene films, Nature volume 577, pages204–208(2020)

[5]. D. Lin et al, Patterns and driving forces of dimensionality-dependent charge density waves in 2H-type transition metal dichalcogenides, Nature Communications 11, 2406 (2020)

 

免责声明

  • 凡本网注明“来源:化工仪器网”的所有作品,均为浙江兴旺宝明通网络有限公司-化工仪器网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:化工仪器网”。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其他来源(非化工仪器网)的作品,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
企业未开通此功能
详询客服 : 0571-87858618