系统硬件
2.1设计方案
该电磁流量计励磁控制系统主要包括恒流源电路、励磁线圈驱动电路、励磁时序产生电路及检流电路, 其框图如图 1所示。图 1 电磁流量计励磁控制系统框图 Fig. 1 Diagram of excitation control system for electromagnetic flowmeter 系统由恒流源电路向励磁线圈驱动电路供电 , 励磁线圈驱动电路根据励磁时序产生电路发出的励磁时序控制信号 CT1和 CT2, 对励磁线圈进行方波励磁。检流电路置于励磁线圈驱动电路中 , 将流过励磁线圈的电流转换为电压信号输出。励磁时序产生电路基于 DSP设计, DSP同时进行电磁流量计的信号处理。
2.2恒流源电路
由于采用高频励磁 , 励磁电流高达数百毫安 , 励磁线圈为感性负载, 而采用 DC/DC器件或类似 PWM控制原理反馈控制构建的恒流源电路会使励磁电流响应速度慢 , 因而采用高功率线性电源搭建恒流控制电路 , 以获得较高的响应速度。恒流源电路原理图如图 2所示。R1采用精密电阻 , 通过调整该电阻值即可获得期望电流。输入电压 VCC为 36 V, D1为保护二极管 , D2防止电流反向。由于电流进入稳态后负载端电压较低 , 因而线性电源上固定散热片以降低芯片工作温度。图 2 恒流源电路原理图 Fig. 2 Schematic circuit diagram of constant-current source
2.3励磁线圈驱动电路及检流电路
励磁线圈驱动电路主要由 H桥及其开关驱动电路组成, 其电路框图如图 3所示。H桥采用 PNP达林顿晶体管 , 以方便其开关驱动电路通过电流控制信号 CON1和 CON2控制其通断 , 从而避免因感性负载造成电压不稳而较难控制的问题 ; 低端采用 N沟道 MOS管, 以方便直接通过电压控制信号 CON3和 CON4控制其通断; 由于 MOS管栅极电流很小, 从而可以在 H桥低端与地之间接入检流电路以准确检测励磁电流。 H桥桥臂 PNP管和 MOS管均选用内部反并肖特基二极管。检流电路设计为低阻值, 以保证 H桥低端电压波动幅值较小。 H桥接上限幅电路, 以保证 H桥正常工作 , 并且为励磁线圈在电流方向切换时释放能量提供回路。 H桥控制采用对臂联动控制 , 以保证单双频励磁时续流回路均具有高阻抗 , 进而保证零点稳定性。CON1、CON2、 CON3、CON4由 H桥开关驱动电路根据接收的励磁时序 CT1和 CT2产生。其中, CON1与 CON4由 CT1控制, CON2与 CON3由 CT2控制, 以实现单频励磁或双频励磁时励磁线圈中电流*流过检流电路。 CD1 和 CD2直接接励磁线圈, 以提供励磁电流。
免责声明
- 凡本网注明“来源:化工仪器网”的所有作品,均为浙江兴旺宝明通网络有限公司-化工仪器网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:化工仪器网”。违反上述声明者,本网将追究其相关法律责任。
- 本网转载并注明自其他来源(非化工仪器网)的作品,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。
- 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。