产品推荐:气相|液相|光谱|质谱|电化学|元素分析|水分测定仪|样品前处理|试验机|培养箱


化工仪器网>技术中心>技术参数>正文

欢迎联系我

有什么可以帮您? 在线咨询

显微镜的光学系统

来源:北京京百卓显唐津办事处   2011年05月13日 11:21  

       显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。
(一)、物镜
   物镜是决定显微镜性能的zui重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。
1、物镜的分类
     物镜根据使用条件的不同可分为干燥物镜和浸液物镜;其中浸液物镜又可分为水浸物镜和油浸物镜(常用放大倍数为90—100倍)。
根据放大倍数的不同可分为 低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。
根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)和复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。
(所谓象差是指所成的像与原物在形状上的差别;色差是指所成的像与原物在颜色上的差别)
(消除色差(当不同波长的光线通过透镜的时候,它们折射的方向略有不同,这导致了成像质量的下降)
2、物镜的主要参数:
   物镜主要参数包括:放大倍数、数值孔径和工作距离。
①、放大倍数是指眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后像的长度是100μm,要是以面积计算,则放大了10,000倍。
显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。
②、数值孔径也叫镜口率,简写N•A 或A,是物镜和聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0.05-0.95,油浸物镜(香柏油)的数值孔径为1.25。
③、工作距离是指当所观察的标本zui清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物镜的工作距离与物镜的焦距有关,物镜的焦距越长,放大倍数越低,其工作距离越长。例:10倍物镜上标有10/0.25和160/0.17,其中10为物镜的放大倍数;0.25为数值孔径;160为镜筒长度(单位mm);0.17为盖玻片的标准厚度(单位 mm)。10倍物镜有效工作距离为6.5mm,40倍物镜有效工作距离为0.48mm 。
3、物镜的作用是将标本作*次放大,它是决定显微镜性能的zui重要的部件——分辨力的高低。
分辨力也叫分辨率或分辨本领。分辨力的大小是用分辨距离(所能分辨开的两个物点间的zui小距离)的数值来表示的。在明视距离(25cm)之处,正常人眼所能看清相距0.073mm的两个物点,这个0.073mm的数值,即为正常人眼的分辨距离。显微镜的分辨距离越小,即表示它的分辨力越高,也就是表示它的性能越好。
显微镜的分辨力的大小由物镜的分辨力来决定的,而物镜的分辨力又是由它的数值孔径和照明光线的波长决定的。
当用普通的*照明法(使光线均匀地透过标本的明视照明法)时,显微镜的分辨距离为d=0.61λ/N•A
式中d——物镜的分辨距离,单位  nm。
    λ——照明光线波长,单位  nm。
    N•A ——物镜的数值孔径
例如油浸物镜的数值孔径为1.25,可见光波长范围为400—700nm ,取其平均波长550 nm,则d=270 nm,约等于照明光线波长一半。一般地,用可见光照明的显微镜分辨力的极限是0.2μm。
(二)、目镜
因为它靠近观察者的眼睛,因此也叫接目镜。安装在镜筒的上端。
1、目镜的结构
通常目镜由上下两组透镜组成,上面的透镜叫做接目透镜,下面的透镜叫做会聚透镜或场镜。上下透镜之间或场镜下面装有一个光阑(它的大小决定了视场的大小),因为标本正好在光阑面上成像,可在这个光阑上粘一小段毛发作为指针,用来指示某个特点的目标。也可在其上面放置目镜测微尺,用来测量所观察标本的大小。
目镜的长度越短,放大倍数越大(因目镜的放大倍数与目镜的焦距成反比)。
2、目镜的作用
是将已被物镜放大的,分辨清晰的实像进一步放大,达到人眼能容易分辨清楚的程度。
常用目镜的放大倍数为5—16倍。
3、目镜与物镜的关系
物镜已经分辨清楚的细微结构,假如没有经过目镜的再放大,达不到人眼所能分辨的大小,那就看不清楚;但物镜所不能分辨的细微结构,虽然经过高倍目镜的再放大,也还是看不清楚,所以目镜只能起放大作用,不会提高显微镜的分辨率。有时虽然物镜能分辨开两个靠得很近的物点,但由于这两个物点的像的距离小于眼睛的分辨距离,还是无法看清。所以,目镜和物镜即相互,又彼此制约。
(三)、聚光器
聚光器也叫集光器。位于标本下方的聚光器支架上。它主要由聚光镜和可变光阑组成。其中,聚光镜可分为明视场聚光镜(普通显微镜配置)和暗视场聚光镜。
1、光镜的主要参数
数值孔径(N•A )是聚光镜的主要参数,zui大数值孔径一般是1.2—1.4,数值孔径有一定的可变范围,通常刻在上方透镜边框上的数字是代表zui大的数值孔径,通过调节下部可变光阑的开放程度,可得到此数字以下的各种不同的数值孔径,以适应不同物镜的需要。有的聚光镜由几组透镜组成,zui上面的一组透镜可以卸掉或移出光路,使聚光镜的数值孔径变小,以适应低倍物镜观察时的照明。
2、聚光镜的作用
聚光镜的作用相当于凸透镜,起会聚光线的作用,以增强标本的照明。一般地把聚光镜的聚光焦点设计在它上端透镜平面上方约1.25mm处。(聚光焦点正在所要观察的标本上,载玻片的厚度为1.1mm左右)
3、可变光阑
可变光阑也叫光圈,位于聚光镜的下方,由十几张金属薄片组成,中心部分形成圆孔。其作用是调节光强度和使聚光镜的数值孔径与物镜的数值孔径相适应。可变光阑开得越大,数值孔径越大(观察完毕后,应将光圈调至zui大)。
在可变光阑下面,还有一个圆形的滤光片托架。
(四)反光镜
反光镜是一个可以随意转动的双面镜,直径为50mm,一面为平面,一面为凹面,其作用是将从任何方向射来的光线经通光孔反射上来。平面镜反射光线的能力较弱,是在光线较强时使用,凹面镜反射光线的能力较强,是在光线较弱时使用。
反光镜通常一面是平面镜,另一面是凹面镜,装在聚光器下面,可以在水平与垂直两个方向上任意旋转。
反光镜的作用是使由光源发出的光线或天然光射向聚光器。当用聚光器时一般用平面镜,不用时用凹面镜;当光线强时用平面镜,弱时用凹面镜。
观察完毕后,应将反光镜垂直放置。
(五)照明光源
显微镜的照明可以用天然光源或人工光源
1、天然光源
光线来自天空,是由白云反射来的。不可利用直接照来的太阳光。
 2、人工光源
①、对人工光源的基本要求:有足够的发光强度;光源发热不能过多。
②、常用的人工光源:显微镜灯;日光灯
(六)滤光器
安装在光源和聚光器之间。作用是让所选择的某一波段的光线通过,而吸收掉其他的光线,即为了改变光线的光谱成分或削弱光的强度。分为两大类:滤光片和液体滤光器。
(七)盖玻片和载玻片
盖玻片和载玻片的表面应相当平坦,无气泡,无划痕。选用无色,透明度好的,使用前应洗净。
盖玻片的标准厚度是0.17±0.02mm,如不用盖玻片或盖玻片厚度不合适,都回影响成像质量。
载玻片的标准厚度是1.1±0.04mm,一般可用范围是1—1.2mm,若太厚会影响聚光器效能,太薄则容易破裂。



 
 
 
显微镜的机械装置             

   
   显微镜的机械装置是显微镜的重要组成部分。其作用是固定与调节光学镜头,固定与移动标本等。主要有镜座、镜臂、载物台、镜筒、物镜转换器、与调焦装置组成。
(一)、镜座和镜臂
    1
、镜座  作用是支撑整个显微镜,装有反光镜,有的还装有照明光源。
    2
、镜臂  作用是支撑镜筒和载物台。分固定、可倾斜两种。
(二)、载物台(又称工作台、镜台)
载物台作用是安放载玻片,形状有圆形和方形两种,其中方形的面积为120mm×110mm。中心有一个通光孔,通光孔后方左右两侧各有一个安装压片夹用的小孔。分为固定式与移动式两种。有的载物台的纵横坐标上都装有游标尺,一般读数为0.1mm,游标尺可用来测定标本的大小,也可用来对被检部分做标记。
(三)、镜筒
镜筒上端放置目镜,下端连接物镜转换器。分为固定式和可调节式两种。机械筒长(从目镜管上缘到物镜转换器螺旋口下端的距离称为镜筒长度或机械筒长)不能变更的叫做固定式镜筒,能变更的叫做调节式镜筒,新式显微镜大多采用固定式镜筒,国产显微镜也大多采用固定式镜筒,国产显微镜的机械筒长通常是160mm
安装目镜的镜筒,有单筒和双筒两种。单筒又可分为直立式和倾斜式两种,双筒则都是倾斜式的。其中双筒显微镜,两眼可同时观察以减轻眼睛的疲劳。双筒之间的距离可以调节,而且其中有一个目镜有屈光度调节(即视力调节)装置,便于两眼视力不同的观察者使用。(四)、物镜转换器
物镜转换器固定在镜筒下端,有34个物镜螺旋口,物镜应按放大倍数高低顺序排列。旋转物镜转换器时,应用手指捏住旋转碟旋转,不要用手指推动物镜,因时间长容易使光轴歪斜,使成像质量边坏。
(五)、调焦装置
显微镜上装有粗准焦螺旋和细准焦螺旋。有的显微镜粗准焦螺旋与装在同一轴上,大螺旋为粗准焦螺旋,小螺旋为细准焦螺旋;有的则分开安置,位于镜臂的上端较大的一对螺旋为是粗准焦螺旋,其转动一周,镜筒上升或下降10mm 位于粗准焦螺旋下方较小的一对螺旋为细准焦螺旋,其转动一周,镜筒升降值为0.1mm,细准焦螺旋调焦范围不小于1.8mm
   
               
            
  
    
   
       

  显微镜及其部件的使用        

1
、使用单筒显微镜时,要养成用左眼观察的习惯(因一般用右手画图),观察时要两眼同时睁开,不要睁一只闭一只,因为这样易于疲劳。为了训练学生习惯于两眼同时睁开观察,可剪一块长约14cm,宽约6cm的长方形硬纸片,在靠近左端处挖一个直径比镜筒上端外径略小的圆孔,把圆孔套在镜筒上段,观察时两眼同时睁开,利用纸片的右端挡住右眼的视线,这样训练一段时间后,就能习惯于两眼同时睁开,然后把纸片去掉。
2
、直筒显微镜的镜臂与镜座连接处,是一个机械关节,可用于调节镜筒的倾斜度,便于观察,镜臂不能过于后倾,一般不超过40°。但是在使用临时装片观察时,禁止使用倾斜关节(当镜筒倾斜时,载物台也随之倾斜,载玻片上的液体易流出),尤其是装片内含酸性试剂时严禁使用,以免污损镜体。
3
、目镜和物镜的使用
      一般都是用一个放大倍数适中的目镜(10×)和zui低倍的物镜开始观察,逐步改用倍数较高的物镜,从中找到符合实验要求的放大倍数。
转换物镜时,先用低倍镜观察,调节到正确的工作距离(成像zui清晰)。如果进一步使用高倍物镜观察,应在转换高倍物镜之前,把物像中需要放大观察的部分移至视野*(将低倍物镜转换成高倍物镜观察时,视野中的物像范围缩小了很多)。低倍物镜和高倍物镜基本齐焦(同高调焦),在用低倍物镜观察清晰时,换高倍物镜应可以见到物像,但物像不一定很清晰,可以转动细准焦螺旋进行调节。 
     通常认为,使用任何一个物镜时,有效放大倍数的上限是1000乘它的数值孔径,下限是250乘它的数值孔径。如40×物镜的数值孔径是0.65,则上、下限分别为:1000×0.65=650倍和250×0.65163倍,超过有效放大倍数上限的叫做无效放大,不能提高观察效果。低于下限的放大倍数则人眼无法分辨,不利于观察。一般*的放大倍数范围是500700乘数值孔径之间的数字。
4
、油浸物镜的使用
使用油浸物镜时,一般不要使用同高调焦。同高调焦只适用于每台显微镜的原配物镜,在使用低倍和高倍物镜时,是一个极有利的方便条件,但在使用油浸物镜时,则受到一定限制,一般地说,用油镜观察未加盖玻片的标本片(载玻片)时,利用同高调焦的安全度较大,而对于有盖玻片的标本片,要小心使用,因为油浸物镜的工作距离很短,在设计和装配时所考虑的同高是对标准厚度盖玻片的。
       用油浸物镜时,只在标本片上滴香柏油,使油镜头与香柏油接触。观察完毕后,要及时进行清洁工作,如不及时进行,香柏油粘上灰尘,擦拭时灰尘粒子可能磨损透镜,香柏油在空气中暴露时间长,还会变稠、变干,擦拭很困难,对仪器很不利。擦拭要细心,动作要轻。油浸物镜前端先用干的擦镜纸擦一两次,把大部分油去掉,再用 滴湿的擦镜纸擦两次,zui后再用干的擦镜纸擦一次。标本片上的香柏油可用“拉纸法”(即把一小张擦镜纸盖在香柏油上,然后在纸上滴一些 ,趁湿把纸往外拉,这样连续三四次,即可干净,一般不会损坏未加盖玻片的涂片标本)擦净。擦镜纸也要防尘,一般在使用前,将每页剪成8小块,贮存在一个干净的小培养皿中,用起来既节省又方便。
5
、聚光器的使用方法
①、使用聚光器的原因
    当放大倍数增加时,一方面由于放大倍数越高,透镜数目越多,被透镜吸收的光线也越多;另一方面由于视场(指的是所能看到被检标本的范围)的亮度与放大倍数的平方成反比,即放大倍数越高,视场越暗。为了得到足够的亮度,必须安装聚光器,把光线集中到所要观察的标本上。
②、观察时聚光器应处的高度
      观察时,要保证得到的观察效果,聚光器的聚光焦点应正好落在标本上。要实现这个条件,就必须调节聚光器的高度。当用平行光照明时,聚光器的聚光焦点是在它上端透镜平面中心上方约1.25mm之处,因此,人们常常要求在观察时将聚光器上升到它上端透镜平面仅稍稍低于载物台平面的高度,这样聚光焦点就可能落到位于标准厚度载玻片上的标本上。当使用比标准厚度薄的载玻片来承放标本时,聚光器的位置要相应地降低一些,而当使用过厚地载玻片时,聚光焦点只能落在标本下方,不利于精细的观察。

 
 
③、聚光器与物镜的配合
      这里所谓的配合,就是使聚光器和物镜这两者的数值孔径取得一致,以更好的进行较为精细的观察。假如聚光器的数值孔径低于物镜,那物镜的部分数值孔径就浪费了,从而达不到它的zui高分辨力。假如把聚光器的数值孔径大于物镜的数值孔径,则一方面不能提高物镜的规定分辨力,另一方面反会由于照明光束过宽,使物象的清晰度下降。聚光器与物镜配合的操作方法是:在完成照明、调焦操作后,取下目镜直接向镜筒中看,把聚光器下的可变光阑关到zui小,再慢慢地开大。开到它的口径与所见视场的直径恰好一样大,然后按上目镜,即可进行观察。每转换一次物镜,都要随着进行依次这样的配合操作。有的聚光器可变光阑的边框上刻有表示开启口径的尺度,可以根据刻度来进行配合。
6.对物镜转换器的精度有两点要求:同轴和齐焦。所谓同轴:是指每个物镜被定位即调入光路后,物镜和目镜的光轴应在一条直线上,所谓齐焦:是指用低倍物镜调焦后,从低倍转换到高倍物镜,无须使用粗调,即可初见物象(但允许细调)。齐焦又称为"等高转换"物镜的齐焦是建筑在下列三条的基础上:    1机械筒长m200毫米;
2目镜前焦面应在镜筒上端面之下10毫米处(目镜中间象距离d)全部目镜设计均以此作为基准;
3)物镜后聚焦与目镜焦面之间的光学筒长是随着物镜焦距而变,不是固定的。
荧光显微镜的原理和结构特点      

       荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光(如紫外光3650入或紫蓝光4200入)作为激发光、激发标本内的荧光物质发射出各种不同颜色的荧光后,再通过物镜和目镜的放大进行观察。这样在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。荧光显微镜的基本构造是由普通光学显微镜加上一些附件(如荧光光源 、激发滤片、双色束分离器和阻断滤片等)的基础上组成的。荧光光源——般采用超高压汞灯(50一200W),它可发出各种波长的光,但每种荧光物质都有一个产生zui强荧光的激发光波长 ,所以需加用激发滤片(一般有紫外、紫色、蓝色和绿色激发滤片),仅使一定波长的激发光透过照射到标本上,而将其他光都吸收掉。每种物质被激发光照射后,在极短时间内发射出较照射波长更长的可见荧光。荧光具有专一性,一般都比激发光弱,为能观察到专一的荧光,在物镜后面需加阻断(或压制)滤光片。它的作用有二:一是吸收和阻挡激发光进入目镜、以免于扰荧光和损伤眼睛,二是选择并让特异的荧光透过,表现出专一的荧光色彩。两种滤光片必须选择配合使用。
荧光显微镜就其光路来分有两种:
1.透射式荧光显微镜: 激发光源是通过聚光镜穿过标本材料来激发荧光的。常用暗视野集光器,也可用普通集光器,调节反光镜使激发光转射和旁射到标本上.这是比较旧式的荧光显微镜。其优点是低倍镜时荧光强,而缺点是随放大倍数增加其荧光减弱.所以对观察较大的标本材料较好。
2.落射式荧光显微镜这是近代发展起来的新式荧光显微镜,与上不同处是激发光从物镜向下落射到标本表面,即用同一物镜作为照明聚光器和收集荧光的物镜。光路中需加上一个双色束分离器,它与光铀呈45。角,激发光被反射到物镜中,并聚集在样品上,样品所产生的荧光以及由物镜透镜表面、盖玻片表面反射的激发光同时进入物镜,反回到双色束分离器,使激发光和荧光分开,残余激发光再被阻断滤片吸收。如换用不同的激发滤片/双色束分离器/阻断滤片的组合插块,可满足不同荧光反应产物的需要。此种荧光显微镜的优点是视野照明均匀,成像清晰,放大倍数愈大荧光愈强。
 (二)[url=http://www.shkon.cn/produce/fluoro/DFM55D.htm]荧光显微镜使用方法[/url].
1.打开灯源,超高压汞灯要预热几分钟才能达到zui亮点。  
 2.透射式荧光显微镜需在灯源与聚光器之间装上所要求的激发滤片,在物镜的后面装上相应的阻断滤片。落射式荧光显微镜需在光路的插槽中插入所要求的激发滤片/双色束分离器/阻断滤片的插块。  
 3.用低倍镜观察,根据不同型号荧光显微镜的调节装置,调整光源中心,使其位于整个照明光斑的*。  
 4.放置标本片,调焦后即可观察。 使用中应注意:末装滤光片不要用眼直接观察,以免引起眼的损伤;用油镜观察标本时,必须用无荧光的特殊油镜;高压汞灯关闭后不能立即重新打开,需经5分钟后才能再启动,否则会不稳定,影响汞灯寿命。
(三)观察  在示教台上的荧光显微镜下用蓝紫光滤光片,可见经o.01%的丫啶橙荧光染料染色的细胞,细胞核和细胞质被激发产生两种不同颜色的荧光(暗绿色和橙红色)。 
              
              
                 
                

        
        
                    

  
                           
 




 
光学显微镜下材料显微结构的观察(金属、陶瓷材料、聚合物的显微观察)


一、目的要求
    1.观察不同材料在显微镜下的微观形态,通过本实验了解铁碳合金在平衡状态下的显微组织;认识和掌握对陶瓷材料进行相分分析和相量测定的方法;了解和观察高分子球晶的结构和形态
    2.掌握光学显微镜结构和使用方法 
              
二、基本原理
1.铁碳合金在平衡状态下的显微组织观察http://www.shkon.com.cn/produce/metalmicro/DMM700C.htm
    根据组织特点和含碳量的不同铁碳合金可分为工业纯铁、钢、铸铁三大类。工业纯铁含碳小于0.0218%C,碳含量小于2.11%的铁碳合金称为钢,碳含量大于2.11%的合金称为铸铁。
    碳钢和白口铸铁在室温下的组织均是由铁素体(F)和渗碳体(Fe3C)这两个基本相所组成,只是因含碳量不同铁素体和渗碳体的相对数量、析出条件以及分布情况有所不同,因而呈现各种不同的组织形态。
铁素体是碳在α铁中的固溶体,常用符号“ F ”表示。铁素体组织为等轴晶粒,晶体结构为体心立方晶格。
渗碳体是铁与碳形成的一种化合物,常用符号“ Fe3C ”表示。按成分和形成条件不同,渗碳体可呈现不同形态。
    珠光体是铁素体与渗碳体的机械混合物,常用符号“ P ”表示。在一般退火情况下,它是由铁素体和渗碳体相互混合交替排列形成的层片状组织。[url=http://www.baikon.com/index.php?id=128]DMM-330C透反射金相显微镜[/url]
    纯金属与单相合金的浸蚀是一个化学溶解过程,当把抛光后的试样与浸蚀剂接触时,首先抛光面上的形变扰动层被溶解掉,这时钢的显微组织没有任何的显露,紧接着是对晶界的化学溶解作用,在晶界上原子排列的规律性比较差,因而快速地被腐蚀掉形成凹沟,这时合金显示出多边形晶粒。若浸蚀继续进行则浸蚀剂将对晶粒本身起溶解作用,由于每个晶粒溶解的速度并不一致,浸蚀以后每颗晶粒都将按照原子排列zui密的面露出表面,在垂直光线的照射下将显示出明暗不一的晶粒。
    两相合金的浸蚀主要是电化学浸蚀过程。不同的相由于成分、结构的不同,具有不同的电极电位,在浸蚀液中形成了许多对微小的局部电池,铁素体具有较高的电极电位为阳极,浸蚀时发生溶解变得低洼粗糙,渗碳体具有正电位为阴极基本不受浸蚀。铁素体在光镜下呈暗黑色,渗碳体呈白亮色。
2.陶瓷材料相分和相量分析[url=http://www.baikon.com/index.php?id=287]XPF-330C偏反光显微镜[/url]
    在显微镜下观察陶瓷试样通常可以见到三个不同的相分,即晶相、玻璃相和气相。
   晶相是由晶体物质所构成,它的形状是比较规则的多边形,也可能是接近于圆形、长条状、针状以及树枝状等。这些情况除了和该晶体物质内部构成、晶体生长和杂质的掺入有关外,还和材料制造过程有关。晶相一般分主晶相和次晶相,主晶相是陶瓷材料的主体,它可以由单相多晶组成,也可以由多相多晶组成;次晶相的生成一般在晶粒内部或边界上析出,也可能在玻璃相中出现,常见的有针状、柱状、片状、球状等。http://www.shkon.com.cn/produce/polorize/XPF330C.htm
玻璃相为无定形体,在偏、反光显微镜下观察时呈现灰黑色,分布在晶粒的周围呈连续状或孤岛状,它在瓷体中起着结合强固的作用。
    气相在陶瓷结构中常见,它在很大程度上取决于挥发性杂质或结合剂等的含量、成型、烧成和热处理工艺。它的形状大小、分布及含量直接影响陶瓷的各种性能。在镜下观察气相时,都呈现黑色的孔洞,磨成光片不经腐蚀也能看到,这是由于空洞不反光的缘故。气孔的形状各异,有圆形、椭圆形、蠕虫状等,气孔有时包裹在晶体内部。
    陶瓷结构中的粒径、平均粒度及粒径分布也是表征显微结构特征的重要参数,其大小和均匀程度会直接影响诸多物理性能,如材料的强度、韧性、硬度、导热、导电、介电、敏感、腐蚀、催化、摩擦磨损、光的吸收与反射等都与粒径及分布特性密切相关。
3.聚合物球晶的观察[url=http://www.shkon.com/produce/polorize/XPR500C.htm]偏光熔点仪[/url]
    晶体和无定形体是聚合物聚集态的两种基本形式,很多聚合物都能结晶。聚合物晶体从形态上看有单晶、球晶、纤维晶、串晶、须晶等。在片状单晶体中分子链垂直于晶体表面,在纤维晶和须晶中,分子链沿纤维轴方向排列。聚合物从熔融状态冷却时主要生成球晶,它是聚合物晶体的主要形式,对制品性能有很大影响。www.shkon.com.cn蔡康偏光显微镜
    球晶是以晶核为中心成放射状增长构成球形而得名,是“三维结构”。但在极薄的试片中也可以近似的看成是圆盘形的“二维结构”,球晶是多面体。由分子链构成晶胞,晶胞的堆积构成晶片,晶片迭合构成微纤束,微纤束沿半径方向增长构成球晶。晶片间存在着结晶缺陷,微纤束之间存在着无定形夹杂物。球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。球晶分散在无定形聚合物中,一般说来无定形是连续相,球晶的周边可以相交,成为不规则的多边形。球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察。另外还可以观察到黑十字消光图象。有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象http://www.shkon.com.cn/produce/polorize.htm晶体用偏光显微镜
三、仪器和样品
    金相显微镜、偏光显微镜、工业纯铁、40钢、T8钢、亚共晶白口铁、聚丙烯球晶样品、SrTiO3压敏陶瓷、BaTiO3电介质瓷样品。www.shkon.com.cn偏反光显微镜,透反射显微镜
四、实验步骤
1. 金属材料的平衡组织观察
    观察的典型铁碳合金为工业纯铁、40钢、T8钢、亚共晶白口铁。用金相显微境行观察并比较各种典型合金的组织特征。
    绘出实验所观察到的试样组织图,在图中标明各组织组成物的名称,并比较其组织特征。
2.陶瓷材料的粒度测定
    (1)晶体粒径的测量
    测量时通常使用有刻度尺的目镜进行。目镜的十字丝上刻有100个小格(刻度尺),每一小格所代表的长度因放大倍数不同而不同。目镜刻度尺每格所代表的长度是利用载物台测微尺来标定的,载物台测微尺嵌于玻片上(或是金属板上),长1mm,分为100小格,每一小格为0.01 mm。
    ①测量原理:首先根据载物台测微尺,对一定的放大系统求出目镜刻度尺每一刻度的代表值,然后再用目镜刻度尺直接测量晶粒的粒度。
    ②测量方法:
    首*行目镜刻度尺标定。取“10×”目镜(附有刻度尺),将载物台测微尺置于载物台上进行准焦,使视域内同时见到两个显微尺。将两显微尺平行并移动载物台测微尺使两尺零点对齐,然后仔细观察两尺上分格线再次重合的地方,数出这一段长度中二尺各有的刻度数。例如目镜刻度尺56小格,载物台测微尺刻度为70小格,即目镜刻度尺56小格相对于载物台测微尺的70小格,于是目镜刻度尺每小格所代表的长度为:
 
    目镜刻度尺代表实际长度值求得后,就可以测定晶粒(或气孔)的平均大小了。即将欲测试样的晶粒(或气孔)移至目镜刻度尺上,读出欲测晶粒(或气孔)所占目镜刻度尺的格数就可以算出晶粒(或气孔)的实际尺寸。比如某一晶粒占据目镜刻度尺4格,则该晶粒的实际尺寸为12.5μm×4 = 50μm。
对多个晶粒(或气孔)进行测量,求其平均值,即为某种相分的晶粒(或气孔)的平均粒径值。对于等径的晶粒只需测一个方向,对于非等径的晶粒如长条状、柱状、针状等则必须分别求出其长短方向的尺寸,然后再求其平均值。
3. 偏光显微镜下聚合物球晶的观察
    将压片机升至240℃;放上盖玻片,再放上少量聚丙烯样品,待样品熔化后再盖上一片盖玻片,压制约一分钟,制成试片。打开上盖,使其缓慢自然降至室温,可制成较大的球晶。
偏光显微镜在使用前首先要对光,此时可装上低倍物镜和目镜,推出起偏片(起偏器),转动视场光阑,使    在目镜中看到的视域为zui亮,再推进起偏片,使得在两个偏振片正交时目镜的视域zui暗。其次是对焦,将制好的试片置于载物台观察,并慢慢提升镜筒,直至看到物象后,再转动微调手轮,使物象达到zui清楚为止。此时偏光显微镜即处于可用状态。用毕后,按取用时状态放好。
    把偏光显微镜调到可用状态后,将聚丙烯试片放在载物台上观察球晶形状,并测量聚丙烯球晶直径

   

    
 
医学和生物学常使用的各种显微镜

  暗视野显微镜  在普通光学显微镜台下配一个暗视野聚光器(图4),来自下面光源的光线被抛物面聚光器反射,形成了横过显微镜视野而不进入物镜的强烈光束,因此视野是暗的,视野中直径大于 0.3μm的微粒将光线散射,其大小和形态可清楚看到。甚至可看到普通明视野显微镜中看不见的几个毫微米的微粒。因此在某些细菌、细胞等活体检查中常常使用。
  实体显微镜  由双筒目镜和物镜构成。放大率 7~80倍。利用侧上方或下方显微镜灯照明。在目镜内形成一个直立的放大实像,可以观察未经加工的物体的立体形状、颜色及表面微细结构,并能进行显微解剖操作,也可以观察生物机体的组织切片。
  [url=http://www.shkon.com/produce/fluoro/DFM60C.htm]荧光显微镜  在短波长光波(紫外光或紫蓝色光,波长250~400nm)照射下,某些物质吸收光能,受到激发并释放出一种能量降级的较长的光波(蓝、绿、黄或红光,波长400~800nm),这种光称荧光[/url]  。某种物质在短光波照射下即可发生荧光,如组织内大部分脂质和蛋白质经照射均可发出淡蓝色荧光,称为自发性荧光。但大部分物质需要用荧光染料(如吖啶橙、异硫氰酸荧光素等)染色后,在短光波照射下才能发出荧光。荧光显微镜的光源为高压汞灯,发出的紫外光源经过激发滤光片(此滤光片可通过对标本中荧光物质合宜的激发光)过滤后射向普勒姆氏分色镜。分色镜将激发光向下反射,通过物镜投射向经荧光染料染色的标本。染料被激发并释放出荧光,通过物镜,穿过分色镜和目镜即可进行观察。目镜下方安置有屏障滤片(只允许特定波长的荧光通过)以保护眼眼及降低视野暗度(图4)。
荧光显微镜的特点是灵敏度高,在暗视野中低浓度荧光染色即可显示出标本内样品的存在,其对比约为可见光显微镜的 100倍。30年代荧光染色即已用于细菌、霉菌等微生物及细胞、纤维等的形态观察和研究。如用抗酸菌荧光染色法可帮助在痰中找到结核杆菌。 40年代创造了荧光染料标记蛋白质的技术这种技术现已广泛应用于免疫荧光抗体染色的常规技术中,可检查和定位病毒、细菌、霉菌、原虫、寄生虫及动物和人的组织抗原与抗体,可用以探讨病因及发病机理,如肾小球疾病的分类及诊断,乳头瘤病毒与子宫颈癌的关系等。 在医学实验研究及疾病诊断方面的用途日益广泛。
  偏光显微镜  从光源发出的光线通过空气和普通玻璃时,在与光线垂直的平面内的各个方向以同一振幅进行振动并迅速向前方传递,这是光的波动性原理。空气与普通玻璃为各向同性体,又称单折射体。[url=http://www.shkon.com/produce/polorize.htm]如果该光源的光通过一种各向异性体(又称双折射体)时,会将一束光线分为各只有一个振动平面的,而且振动方向互相垂直的两束光线。这两束光线的振动方向、速度、折光率和波长都不相同。[/url]这样只有一个振动平面的光线称偏振光。偏光显微镜即利用这一现象而设计。偏光显微镜内,在物镜与目镜间插入一个检偏镜片,光源与聚光器间镶有起偏镜片,圆形载物台可以作360°旋转(图5)。[url=http://caikon.diytrade.com]起偏与检偏镜片处于正交检偏位时,视野*变黑。将被检物体放在显微镜台上。若被检物为单折射体,则旋转镜台,视野始终黑暗。若旋转镜台一周,视野内被检物四明四暗,则说明被检物是双折射体。许多结晶物质(如痛风结节中的尿酸盐结晶、尿结石、胆结石等),人体组织内的弹力纤维、胶原纤维、染色体和淀粉样原纤维等都是双折射体,可借偏振光显微镜术检验,进行定性和定量分析。[/url]
 
  [url=http://www.leikon.com.cn/produce/biology.htm]位相显微镜  又称相差显微镜或相衬显微镜。普通光学显微镜之所以看不见未染色的组织、细胞和细菌、病毒等活机体的图像,是因为通过样品的光线变化差别(反差)很小。标本染色后改变了振幅(亮度)和波长(颜色),影响了反差而获得图像。[/url]但是染色会引起样品变形,也可使有生命的机体 。要观察不染色的新鲜组织、细胞或其他微小活体必须使用位相显微镜。[url=http://www.shkon.cn/produce/biology/XSP11CD.htm]位相显微镜的原理是两个光波因位相差而互相干涉,出现光波强弱和反差的改变而成可见影像。点光源发出的光线可以表现为正弦波图形(图6a)。[/url]两个波峰间的距离为波长,波的振幅表示光的亮度(振幅大、亮度高)。设想同一光源发出的两条光波,分别同时通过空气及某种透明介质。在通过一定厚度的某种透明介质时,光波的速度就会降低,但是光的亮度未变。光波在通过该透明介质后比一直在空气中前进的另一条光波迟滞了波长,因而两条光波出现了位相的变化(位相差)。但人眼不能分辨这两条平行光线的位相差。如果这两条光波射到光屏的同一点上,而且一条光波比另一条光波迟滞了半个波长,即两条光波因位相相反而互相干涉抵消则光线消失,或者相对振幅相互影响而光线减弱。如果一条光波虽然迟滞了一个波长,但两条光波位相相同,则因波的叠加而光线增强。
 
  [url=http://www.leikon.com.cn/produce/biology/XSP13CC.htm]位相显微镜的基本结构与普通光学显微镜相同。不同之处在于:①物镜镜头上面,在物镜第二焦平面装有一块圆盘状的位相板(图6b)。[/url]②聚光器下面,在聚光器*焦平面装有环形光束,光束上刻有狭窄的缝隙可通过环形强光(图6c)。如图6d所示,环形光束 A点发出的光线经过聚光器后成为平行光线。光线通过载物台上的样品时,因样品内各个质点(如b点)的折射率不同而受到干涉,发生衍射,即分为未偏向波(实线)和偏向波(虚线)。未偏向波通过物镜聚焦于位相板 A' 点上成像,然后通过位相板,均匀地分布在标本像平面上成为背景。偏向波通过物镜后从位相板 A'点周围通过位相板同样聚焦在像平面的B'上。换句话说,未偏向波和偏向波是分别通过位相板的不同部位。在位相板上不同的区域涂有不同的涂层,可以分别改变未偏向波或偏向波的速度和亮度,由此两种光波出现了位相差,差了半个波长或一个波长,它们在像平面的合波就出现明暗对比,样品内的各个细节也就能看得见。
  总之,[url=http://www.leikon.cn/produce/biology/XSP11CC.htm]位相显微镜是利用样品中质点折射率的不同或质点厚度的不等,产生光线的相位差,使新鲜标本不必染色就可以看到,而且能够观察到活细胞内线粒体及染色体等精细结构,还可以应用于霉菌、细菌、病毒等更微小活体的研究,进行标本形态、数量、活动及分裂、繁殖等生物学行为观察,并可进行量度与比较。 [/url]位相显微镜是利用样品中质点折射率的不同或质点厚度的不等,产生光线的相位差,使新鲜标本不必染色就可以看到,而且能够观察到活细胞内线粒体及染色体等精细结构,还可以应用于霉菌、细菌、病毒等更微小活体的研究,进行标本形态、数量、活动及分裂、繁殖等生物学行为观察,并可进行量度与比较。
  倒置式显微镜  普通显微镜镜的物镜头方向向下接近标本。倒置式显微镜的物镜镜头则处于垂直向上的位置,因此目镜和镜筒的纵轴与物镜的纵轴呈45度角。[/url]倒置式显微镜  普通显微镜镜的物镜头方向向下接近标本。倒置式显微镜的物镜镜头则处于垂直向上的位置,因此目镜和镜筒的纵轴与物镜的纵轴呈45度角。载物台面积较大,在物镜上方,载物台上方有一个长焦距聚光器和照明光源。物镜和聚光器可装配位相显微镜的附件。放大率16~80倍。组织培养瓶和培养皿可以直接放在载物台上,进行不染色新鲜标本及活体、细胞的形态、数量和动态观察。可进行多孔微量生物化学及免疫反应平板的结果观察。倒置式显微镜可换用普通亮视野光学镜头;可装配偏振光、微分干涉差、荧光附件进行观察。
  微分干涉差显微镜(DIC)  又称干扰或干涉显微镜。能看到和测定微小的位相变化,与位相显微镜相似,使无色透明的标本具有明暗和颜色的变化,从而增强反差。在普通光学显微镜的基本结构上安装偏光和干涉部件,以及360°旋转载物台。它又利用偏振光的干涉原理。如图7所示,在光源上方安置有起偏镜片和光束分解棱镜。从起偏镜片出来的直线偏振光通过光束分解棱镜后,分成互相垂直振动的两条直线偏振光。两条光线经聚光器折射后射向样品。因样品内各个质点的折射射率不同,部分光波的位相改变及因干涉而发生横向偏移。两条光线通过物镜后经第二组光束分解棱镜相合并,由检偏镜发生干涉。终末像的每一个点是由物体上同一点的两个互相重叠的不同图像构成的一种混合像,从而使肉眼得以辨识。 
 微分干涉差显微镜同样可以观察到在普通亮视野中看不见的无色透明物体,可以观察细胞、细菌等活体,而且影像呈立体感,较位相显微镜的影像更细致、更逼真。可用它对活细胞的各个部位作更精细的研究。如果用白光照明,不同位相表现为各种颜色,转动载物台,颜色会发生变化。单色光照明产生明暗反差,各种成分呈现不同的对比度。微分干涉差显微镜又可以作为一种高度精密的超微量光学天平来使用,用以估测的干物体的质量可以小到 1×-14克。当细胞中所含固体物质的浓度增加百分之一时,其折射率相应增加0.0018。细胞各相成分的折射率可以根据它与相关区域(悬浮液区)间位种的不同而估计,从而可进一步算出一个细胞中某些成分的干燥重量。
  
 

免责声明

  • 凡本网注明“来源:化工仪器网”的所有作品,均为浙江兴旺宝明通网络有限公司-化工仪器网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:化工仪器网”。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其他来源(非化工仪器网)的作品,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
企业未开通此功能
详询客服 : 0571-87858618