产品推荐:气相|液相|光谱|质谱|电化学|元素分析|水分测定仪|样品前处理|试验机|培养箱


化工仪器网>技术中心>技术参数>正文

欢迎联系我

有什么可以帮您? 在线咨询

电容式液位传感器的系统及设计

来源:金湖铭宇自控设备有限公司   2017年02月16日 08:45  

电容式液位传感器的系统及设计:

 

    液位测量常用的方法有滑动电位器法,电感线圈法,数字电容法等。滑动电位器法是目前中低档汽车大多采用的检测方法,但当油垢覆盖电位器后,其阻值会发生变化,造成误差过大,使此类油箱传感器成为易损件。电感线圈法为现在汽车多采用的方法,但其结构复杂、成本高、无法广泛使用。数字电容法是相对易实现、设计灵活、成本低、精度高的测量方法,但需解决线性度和补偿校正等问题。

 

    汽油或柴油是具有电气缘性的液体混合物,黏度低、流动性好、蒸发性强,测量对象的这些物理性为使用电容式液位传感器创造了条件;另一方面,高速发展的微电子技术能够以相对低廉的价格去实现小电容的测量,这种测量方案具有广阔的市场前景。

 

1 硬件设计

1.1 电容式测量油量原理

    电容式传感器是将被测非电量的变化转换成电容量变化的一种传感器。电容式液位传感器是以液位变化时,引起介电常数变化为原理的。当被测液体的液面在电容式圆柱形套筒电间变化时,引起电间不同介电常数介质的高度发生变化,从而导致电容变化。本电容传感器采用圆柱形套筒结构。

    电容式传感器外壳和内圆柱采用钛合金材料,构成两个电板,设外壳半径为R1;内圆柱半径为R2;汽油介电常数为ε0;真空中的介电常数为ε1;圆柱套筒的高度为H;液面的高度为L;忽略边缘效应,当L=0时,传感器处于零点,电容值z小,传感器电容量

 

1.2 简介

    是一款带有单片机处理单元的电容测量的电容数字转换单芯片方案,其内部结构原理。这种转换测量原理提供了对于转换时间范围z小可达2μs的高精度时间转换。芯片内部带有一个48位DSP单元,这个处理单元将处理电容测量的信息,获得测量数据,并将结果送到芯片输出端口。所得数据将存放在内部RAM当中,而内部有OTP或者SRAM两种方法编写程序。

    有漂移和接地两种连接电容传感器的方式,由于本设计管脚资源充足,为提高抗干扰性,采用漂移连接法,电容传感器通过屏蔽线直接连到,测得的电容值转换成数字值,精度z高可达21位有效位,可通过读取读寄存器中待测电容与参考电容的比率从而计算出待测电容值。实验设计量程为16~45 pF,而可测量范围覆盖达到几F到几百nF,所以满足本设计对于测量范围的要求。

    电容传感器数据可在芯片内部进行校准,然后通过SPI或者I2C数据串行接口进行传送。带有标准固件,提供了20个配置和参数寄存器以及12个读寄存器。

 

1.3 数字电容式液位传感器应用系统

    本设计通过带有的标准固件03.01.xx配置电容测量寄存器并进行读取,选择STM32F103ZET6通过I2C串行总线接收来自数字电容测量值,然后将数据发送至LCD屏显示。

    这里采用单一传感器漂移模式,根据电容传感器测量数据选择20 pF陶瓷电容为参考电容连接在PC0和PC1两端,待测电容连接在PC2和PC3两端。设置配置寄存器为漂移单一电容模式,内部放电电阻为90 kΩ,选择电容测量的触发源为持续触发模式。

    通过读寄存器Res1读到的是C/C参舞考比率,无符号固定点数带有3位整数和21位小数,数值为0~7.999 9,精度为0.477×10-6。虽然有着内部接地补偿和外部漂移寄生电容补偿,但为了保证系统可靠运行和高精度测量,还要解决好外围电路的抗干扰和屏蔽问题,其中去耦电容的选择以及电源的稳定性都是系统硬件设计的重要环节。

 

2 软件结构设计

    部分主要包括寄存器的配置,以及电容数据采集模块;STM32F103ZET6部分主要包括与的串行通讯和与LCD屏通讯显示数据两部分。部分软件采用汇编语言编写,STM32F103ZET6部分软件则使用C语言编写。

 

2.1 部分软件设计

    在软件开发评估过程中,是将固件写到SRAM中的。SRAM地址空间为4 k x 8 bit。开始上电后发送0x88,这个命令将复位所有状态。发送8位数据至000到FFF的任意SRAM地址并从此地址再读回数据,进行通讯测试后再次发送操作码0x88状态全复位。数据发送至SRAM后,就可按照设计要求进行配置寄存器的设置了。设计选择的是单一漂移电容模式,一个传感器,一个参考电容,*补偿,内部放电电阻为90 kΩ,持续触发,电容测量的循环时间为20μs。电容测量的循环时间是一个重要的CDC参数,需要注意电容放电时间的大小,设置的循环时间一定要足够长,默认情况下设置的循环时间>2倍的放电时间,所以选择20μs可以满足设计要求。配置寄存器设置完后发送部分复位操作码0x8a和开始电容测量指令0x8c,等待100 ms后就可从Res1寄存器中读取C/C参考的比率。

 

2.2 STM32F103ZET6部分软件设计

    STM32F103ZET6是一款基于ARM Cortex—M3内核的32位处理器,内部带有I2C硬件接口。如今I2C总线协议已成为芯片间低速串行通信的事实标准,应用范围将越来越广。I2C总线在传输数据过程中共有3种类型信号,分别是开始信号、结束信号和应答信号。在读时序中,STM32F103ZET6在发送开始信号后的第1个Byte就要发送一个单的7位设备地址,Pcap01作为从机的设备地址为1010000。STM32F103ZET6接收到数据,进行数据转化后滤波,再通过8位数据总线的并行接口发送至LCD液晶屏显示。软件流程图如4所示。

基于Pcap01的电容式液位传感器系统设计

 

3 实验验证与结果分析

    为验证系统的测量精度和性能,对样机进行了实验测试,采用30 cm高度的电容式传感器和93号汽油在自行设计的实验平台上进行多次实验。

 

3.1 精度分析

传感器测得的电容值与参考电容的比率C/C参考存放于Pcap01的Res1寄存器中,对10 cm和20 cm高度的汽油进行多次测量。

Pcap01的测量比率范围为0~7.999 9,从测量结果可以看到,24位的测量结果可以稳定在高12位,去除整数位,小数位可以稳定在9位,则测量精度为20/(29-1)=0.04 pF。

 

3.2 线性度分析

由式(1)可知,电容C与液面高度x成正比关系,图6为测量范围0~35cm,进给量为0.5 cm时的传感器电容值与高度值的变化曲线,从图中可以看出,系统具有较好的线性度。

 

4 结束语

本文利用电容转数字芯片Pcap01,结合STM32对于电容数据的处理,充分考虑了信号的屏蔽与抗干扰等问题,通过在自行设计的实验平台上进行的测量精度与线性度分析实验显示系统具有较高的可靠性。利用Pcap01设计的液位传感器系统具有结构简单、精度高、测量范围广的点,适合用于油箱、油库等的液位测量中。

 

扩展阅读:铭宇自控液位计

免责声明

  • 凡本网注明“来源:化工仪器网”的所有作品,均为浙江兴旺宝明通网络有限公司-化工仪器网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:化工仪器网”。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其他来源(非化工仪器网)的作品,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
企业未开通此功能
详询客服 : 0571-87858618