产品展厅收藏该商铺

您好 登录 注册

当前位置:
美国布鲁克海文仪器公司>资料下载>测量应用案例-20210207

资料下载

测量应用案例-20210207

阅读:139          发布时间:2021-2-23
提 供 商 美国布鲁克海文仪器公司 资料大小 3.5MB
资料图片 下载次数 27次
资料类型 PDF 文件 浏览次数 139次
免费下载 点击下载    
 文献名: Identification of a moderate affinity CD22 binding peptide and in vitro optimization of peptide-targeted nanoparticles for selective uptake by CD22+ B-cell malignancies

 

作者:Baksun Kim,a   Jaeho Shin,a   Tanyel Kiziltepeabc  and  Basar Bilgicer abc   

a Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
b Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA

c Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA

 

摘要:B cell malignancies, such as B cell leukemia and lymphoma, have CD22 overexpression with 7% of patients. A short CD22 binding peptide (PV3) with a moderate affinity (Kd 9 μM) was identified by screening multiple peptide candidates determined through analysis of CD22-epratuzumab complex crystal structure. PV3 binding specificity was confirmed via competitive binding inhibition, then was used as the targeting moiety on CD22-targeted liposomal nanoparticle (TNPPV3) formulations. To maximize the potential therapeutic outcome of TNPPV3 formulation, nanoparticle design parameters, such as peptide hydrophilicity, ethylene glycol linker length, valency, and particle size were optimized for maximum selective cellular uptake by CD22+ malignant cancer cells. The effects of altering design parameters one at a time on TNP uptake were evaluated using flow cytometry, and the optimal parameters for TNPPV3 were determined to be 8% peptide density, EG18 linker, and 3 lysines of 100 nm nanoparticles. This optimally designed TNPPV3 achieved 4 and 40-fold enhancement of cellular uptake by CD22+ Raji cells over CD22 Jurkat and MOLT-4 cells, respectively, demonstrating selectivity for malignant cells with CD22 overexpression. Overall, this study establishes PV3 to be CD22 binding peptide with proven effectiveness as a targeting element. In future, the optimal TNPPV3 formulation will potentially achieve maximal in vivo therapeutic outcomes by efficiently targeting CD22+ blood cancer cells in vivo.

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~

对比框

产品对比 产品对比 联系电话 二维码 意见反馈 在线交流

扫一扫访问手机商铺
010-62081908
在线留言