产品展厅收藏该商铺

您好 登录 注册

当前位置:
美国布鲁克海文仪器公司>资料下载>Aggregation morphology of planar engineered nanomaterials

资料下载

Aggregation morphology of planar engineered nanomaterials

阅读:136          发布时间:2020-2-20
提 供 商 美国布鲁克海文仪器公司 资料大小 1.7MB
资料图片 下载次数 29次
资料类型 PDF 文件 浏览次数 136次
免费下载 点击下载    

作者 S. Drew Storya, Stephen Boggsa, Linda M.Guineyb, Mani Rameshb, Mark C.Hersamb, C. Jeffrey Brinkerc, Sharon L.Walkera,d

a    Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA

b    Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, IL, USA

c    Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA

d    Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA, USA

 

摘要: In this investigation, the utility of a static light scattering (SLS) technique to characterize aggregate morphology of two-dimensional engineered nanomaterials (2D ENMs) was systematically evaluated. The aggregation of graphene oxide (GO) and lithiated-molybdenum disulfide (Li-MoS2) were measured and compared to that of a spherical reference colloid, carboxylate-modified latex (CML) nanoparticles. The critical coagulation concentration (CCC) for all dispersions was determined via analysis of aggregation kinetics using time-resolved dynamic light scattering. This technique allowed for the elucidation of the transition from the reaction-limited aggregation (RLA) regime to diffusion-limited aggregation (DLA). The findings of this study support the aggregation trends predicted by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and recent computer simulations of aggregation kinetics. For all nanomaterials, as ionic strength increased towards the respective the CCC, fractal dimension decreased; any increase in ionic strength beyond the CCC did not yield significant change in fractal dimension. Across comparable primary particle sizes and using both carbonaceous (GO) and inorganic (Li-MoS2) 2D ENMs, this study further supports the use of SLS for the measurement of fractal dimension for 2D materials. To further support this claim, the aggregate morphology of GO in both RLA and DLA regimes was measured via cryogenic transmission electron microscopy.

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~

对比框

产品对比 产品对比 联系电话 二维码 意见反馈 在线交流

扫一扫访问手机商铺
010-62081908
在线留言