产品展厅收藏该商铺

您好 登录 注册

当前位置:
美国布鲁克海文仪器公司>资料下载>测量应用案例-76-200SM

资料下载

测量应用案例-76-200SM

阅读:267          发布时间:2015-9-11
提 供 商 美国布鲁克海文仪器公司 资料大小 0K
资料图片 下载次数 2次
资料类型 浏览次数 267次
免费下载    
 文献名: The direct synthesis of interface-decorated reactive block copolymer nanoparticles via polymerisation-induced self-assembly
 
作者: Yanyan Jiang,   Na Xu,   Jie Han,   Qiuping Yu,   Lei Guo,   Pan Gao,   Xinhua Lu and    Yuanli Cai  
The Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
 
摘要:Self-assembly of amphiphilic block copolymers in water suffers from the undesired encapsulation of hydrophobic reactive motifs in a core-forming block, which deteriorates their performance as aqueous catalysts. This problem can be circumvented by polymerisation-induced self-assembly (PISA). Herein, we report a new strategy for one-pot synthesis of reactive block copolymer nanoparticles whose hydrophobic reactive motifs decorate the surrounding core–shell interfaces. We demonstrate fast RAFT aqueous dispersion polymerisation of a commercially available specialty monomer, diacetone acrylamide (DAAM), under visible light irradiation at 25 °C. PISA is induced by polymerisation via sequential dehydration, phase separation and reaction acceleration, thus achieving complete conversion in 30 min. The replacement of minimal DAAM by an NH3+-monomer induces slight hydration of the core-forming block, and thus a low polydispersity of the resulting statistic-block copolymer. Moreover, simultaneous in situ self-assembly and chain growth favour the adjustment of newly-added NH3+-units outward to core–shell interfaces while the major DAAM units collapse into hydrophobic PISA-cores. Both lead to timely and selective self-assembly into the new reactive nanoparticles whose NH3+-motifs decorate the surrounding core–shell interfaces. These nanoparticles are well-suited for fabrication of advanced nanoreactors whose hydrophobic dative metal centres decorate the surrounding interfaces via simultaneous imine conversion and Zn(II)-coordination. Such PISA-nanostructures endow hydrophobic metal centres with a huge and accessible specific surface area and are stabilized by water-soluble shells. Therefore, this strategy holds fascinating potential for the fabrication of metalloenzyme-inspired aqueous catalysts.
 

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~

对比框

产品对比 产品对比 联系电话 二维码 意见反馈 在线交流

扫一扫访问手机商铺
010-62081908
在线留言