水产养殖领域中的传感器检测系统
水质指标的内容
水质指标分为四类:
物理性质指标:固体含量、浑浊度、透明度、温度、电导率等;
化学性质指标:pH值、硬度、有机物——含碳化合物(生化需氧量、化学需氧量、耗氧量、溶解氧等)、有机毒物;
生物性质指标:大肠杆菌数、细菌总数、病原菌及病毒等;
其他指标:臭味、顔色、透明度等。
水质监测的方法
云传物联技术有限公司推出的AMT-FB301多参数水质监测浮标系统,AMT-FB301可以实现多种水质参数的同时测量,包括溶解氧、pH、ORP、电导率和浊度等,DT-200主控机通过RS485(Modbus/RTU协议)总线采集处理测量数据,再由无线模块发送到远程服务器,用户可以实时获得监测数据。
该系统以浮标为载体的水质监测系统是化学分析仪器和各种水质传感器的集成,并结合了现代化的数据采集处理技术、数据通信技术、浮标设计及制造技术,是实现环境水质监测自动化、网络化、在线监测的有效技术手段。
AMT-FB301多参数水质监测浮标系统的应用领域广泛,可用在水产养殖、工业生活污水排放、农业灌溉用水、环境监测等领域。
溶解氧(DO)表示什么?
溶解氧(DO)表示水中氧的溶解量,单位用mg/L表示。不同的生化处理方式对溶解氧的要求也不同,在兼氧生化过程中,水中的溶解氧一般在0.2-2.0mg/L之间,而在SBR好氧生化过程中,水中的溶解氧一般在2.0-8.0mg/L之间。因此,兼氧池操作时曝气量要小,曝气时间要短;而在SBR好氧池操作时,曝气量和曝气时间要大得多和长得多,而我们用的是接触氧化,溶解氧控制在2.0-4.0mg/L。
溶解氧是池塘水体中一个重要的水质因子,它不但影响到养殖动物的生长发育、摄食吸收和生存活动,还影响到水体中有机污染物的分解以及毒害物质(如:氨氮、亚硝酸盐和硫化氢等)的降解。静水池塘的溶解氧变化主要由浮游植物的光合作用程度和生化耗氧量来决定。由于受到风向、风力以及热阻力(温跃层)的影响,而表现为池塘水体溶氧水平和垂直分布的不均匀性。
随着科技的发展和电子信息技术的进步,人类快速步入物联网社会。传感器作为物联网社会的最关键的组件之一,在万物互联的物联网中起到了至关重要的作用。溶解氧传感器是传感器家族的重要一员,应用非常广泛。
常用于:污水、纯水、海水、渔业水、泳池用水、中水、瓶装纯净水、饮用天然矿泉水、冷却水、农田灌溉水、景观用水、生活饮用水、地下水、锅炉水、地表水、工业用水、试验用水等。
· 无流速要求,测量过程不消耗氧气;
· 不需预热,响应速度快,45秒响应(T90);
· RS485通讯接口,标准Modbus协议,便于集成;
· 数据分析软件,具有校准、记录、分析、诊断功能
· 光学技术,无需频繁更换膜片,也不用补充电解质溶液;
· 拥有自主产权和稳定关键器件供应链,产品具有*性价比;
· 改良的传感膜,漂移小,易存储,可在空气中或湿润的环境中长期存储;
水产养殖领域中的传感器检测系统
电导率传感器
电导率传感器可以说是水质检测仪中使用最多的传感设备,它主要用于检测水体中总离子的浓度,而且根据测量原理的不同可以分为电极型、电感型以及超声波型。
PH传感器
PH传感器主要通过检测氢离子来获取水体的酸碱值,而PH值是水体的一个重要指标,在多个行业中对水体PH值都有严格的要求。
ORP传感器
ORP传感器主要用于溶液的氧还原电位,它不仅能多针对水体进行检测,还可以对土壤和培养基中的ORP数据进行检测,因此它也是应用领域最多的传感器,通常它会跟PH传感器一起使用。
传感器外表面:用自来水清洗传感器的外表面,如果仍有碎屑残留,用湿润的软布进行擦拭, 对于一些顽固的污垢,可以在自来水中加入一些家用洗涤液来清洗。
- 荧光帽外表面:除去传感器前端的防护罩,用清水冲洗传感器光窗上的污物,后再将罩子罩上;如果需要擦拭,请用软布并小心力度及用力方向;如果对荧光膜层造成划痕,传感器将无法正常工作。
- 荧光帽内表面:如果水汽或灰尘侵入到了荧光帽的里面,清洁步骤如下:
l 取下荧光帽;
l 用自来水冲洗荧光帽的内表面;
l 对于含脂肪和油的污垢,用加了家用洗涤液的温水清洗;
l 用去离子水冲洗荧光帽的内表;
l 用干净的无绒布轻轻擦干所有表面,放在干燥的地方让水分*蒸发。
- 检查传感器的线缆:正常工作时线缆不应绷紧,否则容易使线缆内部电线断裂,引起传感器不能正常工作。
- 检查传感器的外壳是否因腐蚀或其他原因受到损坏。
- 荧光帽日常保存:不使用时放在带有湿润海绵的防护罩里,让传感器长期保持湿润状态。如传感器荧光帽头部长期是干燥状态,会产生测量结果的漂移,需要在水中浸泡48小时再使用。
荧光法溶解氧测量仪基于荧光猝熄原理。蓝光照射到荧光物质上使荧光物质激发并发出红光,由于氧分子可以带走能量(猝熄效应),所以激发的红光的时间和强度与氧分子的浓度成反比。通过测量激发红光与参比光的相位差,并与内部标定值对比,从而可计算出氧分子的浓度。
废水中的溶解氧监测曾起着非常重要的作用,但是,传统的电化学方法的使用膜、电极和电解液,从而会导致很多问题,即使进行定期维护,还是不能得到准确的测量结果。创新的新型荧光技术,没有膜和电解液,几乎不用维护,性能优异,使用方便。
水产养殖是以人工控制为前提下繁殖、施肥培育和撒网收获水生动植物的生产活动。一般包括在人工饲养管理下从苗种养成水产品的全过程。广义上也可包括水产资源增殖。水产养殖有有以下三大养殖方式。粗养是在中、小型自然形成的水域中投放苗种,*靠大自然中的天然饵料养成水产品,如湖泊水库养鱼和浅海养贝等。精养是在较封闭和体积较小的水体中用投饵、人工施肥等方法养殖水生动植物,如池塘养鱼、圈网养鱼和围栏养殖等。高密度精养采用流水、控温、增氧和投喂优质饵料等方法,在小水体中进行高密度养殖,从而获得高产,如流水高密度养鱼、虾等。
水稻田的产量。
水产养殖常用传感器有温度传感器、水质ph传感器和溶解氧传感器。它们都是水产养殖水体检测不可少的仪器。
一、Ph传感器工作原理
pH定义为介质中氢离子活度的负对数值,用于衡量介质酸碱程度。氢离子(H+)选择性渗透通过外层膜,产生电化学电位,即电化学分界层的电位。生成的电化学电位取决于介质的pH值。电极内置Ag/AgCl作为参比电极,其电位稳定,不受介质酸碱度影响。变送器基于能斯特方程(Nernst) 将测量电压转换成相应的pH值。
二、荧光溶解氧传感器工作原理
溶解氧是表征溶解在水中分子态氧含量的指标。极谱法溶解氧电极由阳极、阴极、电解质和溶氧膜组成。氧分子渗透通过溶氧膜,在阴极还原成氢氧根离子;在阳极银被氧化形成卤化银层。阴极释放电子,阳极接收电子,形成的回路电流与介质中溶解氧浓度成比例关系。变送器将电流信号转换成溶解氧浓度、氧饱和度或氧分压值。
光学溶解氧电极使用465nm光源作为激发光,照射敏感膜片产生620nm荧光。在水中溶解氧的作用下发生荧光猝灭效应,猝灭程度与溶解氧浓度成线性关系。
三、氨氮传感器工作原理:
氨氮是工业、农业和生活废水中常见的一种污染物。氨氮会消耗水体中的溶解氧,导致水体富营养化。AMT-PA300基于离子选择法测量铵离子,由工作电极、参比电极、离子选择膜和电解液组成。只有待测铵离子可以迁移通过离子选择膜,并发生电荷变化,在工作电极上产生电位,电位值与离子浓度成比例,参比电极电位恒定不变。变送器基于能斯特方程,测量工作电极与参比电极之间的电位差并转换成氨氮浓度,基于电位法测量原理,不受色度和浊度的影响。