应用领域 | 电气 |
---|
产品分类品牌分类
-
双枪电缆刺扎器 真空泵 局部放电巡检仪 大型张力机 高效真空净油机 振动测量仪 回路电阻试验仪 负荷测试仪 局放监测仪 数字测振仪 电缆安全刺扎器 地下管线探测仪 双钳相位伏安表 真空及回充装置 大电流钳形电流表 漏电电流分析装置 直流电阻测量仪 指针电源操作箱 故障测试仪 精密漏点仪 多功能伏安相位仪 雷电计数器校验仪 在线监测系统 智能交直流分压器 电容电流测试仪 全自动变化组别测试仪 金属抱杆 变压器直流电阻测试仪 钳型电流表 直流稳压稳流电源 参数测试仪 计数器校验仪 介质损耗测量仪 熔喷布无纺静电发生器 变压器绕组变形检测仪 全自动油介耐压强度分析 在线式氧化锌避雷器测量仪 高压发生器 智能超低频高压发生器 变频串联谐振试验装置 直流高压发生器 耐电压测试仪 三倍频电源发生装置 交直流分压器 大电流发生器 高压试压变压器 绝缘子带电测试仪 智能绝缘电阻测试仪 直读式盐密度测试仪 高压验电器 空气干燥发生器 高压介质损耗测试仪 高压耐压成套装置 微电脑高压交流变压器 程控超低频高压发生器 高压断路器 低频耐压发生器 绝缘油介电强度试验仪 变频介损测试仪 高压直流试验仪 超低频交流耐压试验 绝缘耐压测试仪 无线高压变比测试仪 高压断路器动特性测试仪 工频交流试验变压器 微机型高压耐压装置 高电压测量装置
-
油面张力测试仪 回路矢量测试仪 质量分析仪 微水测量仪 管状电加热器 轴承感应加热器 油脱气振荡仪 油运动粘度检定仪 防雷元件测试仪 钳形电流记录仪 便捷交流负载箱 SF6定量检漏仪 输电线路参数测试仪 绝缘油PH测定仪 真空净油机 变频串联谐振试验成套装置 数字式真空计 真空泵 油色谱仪 油闭口闪点仪 数字绝缘电阻 开关测试仪 SF6气体微水测试仪 真空度测试仪 发电机转子交流阻抗测试仪 变压器容量特性测试仪 开关参数测试仪 运动粘度测定仪 智能微水仪 万能拉力试验机 高低压开关柜通电台 SF6气体抽真空充气装置 SF6气体密度校验仪 智能型开关电阻测试仪 智能型回路电阻测试仪 高压开关交流耐压试验仪 电流互感器伏安特性测试仪 SF6气体回收装置
产品简介
详细介绍
沈阳市遥感卫星高压核相仪
一、简介
1、仪器外观简介、仪器操作简介:
指示灯:异相红灯亮:两线路异相。
同相绿灯亮:两线路同相。
充电红灯亮:正在充电。
充电绿灯亮:电已充满。
按键:1)长按开机或关机。2)短按近程测量模式和远程测量模式切换。
补充:1)右上角有电量指示;2)下端有充电接口插孔。
指示灯:
测量时:红灯和绿灯交替闪烁。
充电时:红灯亮正在充电,绿灯亮已充满。
蜂鸣器:
接触到高压带电线路则蜂鸣器响2秒,表示线路带电。
安装螺孔:
与伸缩绝缘杆相连。
充电孔:
充电时:连接充电器。
自检时:连接测试线接地端。
检测时:连接接地线。
指示灯:
开机时:工作指示灯为红色常亮。
测量时:工作指示灯为绿色常亮。
充电时:充电指示灯充电为红色充满为绿色。
蜂鸣器:
接触到高压带电线路则每隔4秒蜂鸣一次,表示线路带电。
弹力带:
将采集器贴于母排,用弹力带捆绑安装。
充电孔:
充电时连接充电器。
2.仪器自检方法:
发射器连接测试线(操作图如下)。发射器启动,蜂鸣2秒,红绿两指示灯交替闪烁。接收主机开机,在测量界面显示对应发射器信息。则发射器与主机工作均正常。异常现象及其处理,请详见仪器检查与故障判断。
提示:
如果测量度数为180°,将一个测试线插头左右对调即为0°。因为火线与零线对调后,两线相位差为180°。
自检时两发射器与接收主机的距离大于0.5米为宜。当距离小于0.2米时,可能只连接了1个发射器而主机显示2个发射器信息。此现象为正常现象,不影响仪器使用。当2个发射器都接电时,仪器显示不受短距离影响。
自检测试线插头内有限流电阻,人接触鳄鱼夹不会引起触电,以保证人身安全。
沈阳市遥感卫星高压核相仪
二、各电压等级核相操作
电压等级与被测物 | 操作说明 近距离测量时使用X/Y,或者X1/Y1,或者X2/Y2. 远程测量时使用Y,或者Y1,或者Y2,不用X/X1/X2 |
220KV~110KV高压裸线 | 使用高压发射器X、Y。发射器连接绝缘杆后挂接在高压线上测量。详见高压线核相操作示意图(图2)。 |
66KV~6KV高压裸线 | 使用发射器高压发射器X、Y,或者使用低压发射器X1、Y1。高低压发射器不可混用。发射器连接绝缘杆后钩挂在高压线上测量。详见接触高压线核相操作示意图(图2) |
10KV~6KV带绝缘层电缆 | 使用低压发射器X1、Y1。发射器钩挂在带电线路外绝缘层上即可测量。如发射器未启动,则将其尾端(充电孔)用配置的接地线接地。 |
高压开关柜带电指(显)示器 | 使用低压发射器X1、Y1。发射器尖头端插入带电指示器,手握发射器尾部即可测量。也可用接地线将充电孔接地进行测量。详见带电显示器核相示意图(图3)。开关柜PT、CT二次侧取电点核相操作与此测量方法相同。 |
10KV/35KV封闭式高压柜接线T头 | 使用低压发射器X1、Y1。发射器连接绝缘杆后接触T头测试。详见接线T头核相操作示意图(图4)。 |
严格五防开关柜 | 使用中置柜采集器X2、Y2。将所测开关柜的母排停电,或将手车摇出。再将采集器贴在母排或手车母线上,用配置的弹力捆绑带固定。按下采集器开关,使其开机。然后开关柜通电则可测量。 |
380V/220V市电线路 | 使用低压发射器X1、Y1。发射器前端接触带电线路即可测量。 |
提示:
部分型号开关柜装配了带电显示器,其上有取电点,可用于核相。此种方法为二次侧核相,其核相结果正确与否,依赖于L1、L2、L3与与母线的对应关系是否正确。
近距离核相时只用1个主机,发射器X系列/Y系列配对使用。远程核相时,两个主机相距较远测量,但每个主机只与Y系列发射器配合测量。
一般高压输电线路近距离核相操作方法如图2所示,将X、Y发射器分别用绝缘杆挂接在高压线上,主机开机后选择近距离测量界面,观看测量结果。
三、结果判断与分析
结果判断采用国标*标准,同异相以30°为界。近距离核相时X->Y相位差≥30°时为异相,语音提示“异相”,屏幕显示“异相”,异相指示灯亮。X->Y相位差<30°为同相,语音提示“同相”,屏幕显示“同相”,同相指示灯亮。所有相位差结果以X为参照,度数为Y滞后于X的相位。
测试结果 | 结果判断 | 两线路其它信息 |
相位差稳定为0~3度 | 同相 | 同频率等电压可并网。 |
相位差稳定在115~125度 | 异相 | 同频率等电压顺序。 |
相位差稳定在235~245度 | 异相 | 同频率等电压逆序。 |
相位差不稳定,0~360度循环变化 | 两线路频率不相同 | 两线路属于不同电网,且未同步相位,不能并网。 |
相位差在非0,120,240附近值稳定 | 两线路电压有差异 | 两线路频率相同,电压等级可能相同,但电压有差异。 |
提示:
两线路频率不相同时,需要使用准同期并列装置控制发电机的频率相位,使发电机的相位和频率与主网*后才可以并网送电。准同期与自同期并列操作见附录B。
远程核相结果与近距离核相结果的判断方式基本*。近距离核相的相位差结果会显示在屏幕上。远程核相的结果需要人工计算差值,相位差=甲机Y相位-乙机Y相位。
四、?远程核相
将Y或Y1或Y2发射器挂接到一条被测电线上。甲乙两机必须使用相同的Y系列发射器。如果甲机使用高压发射器Y,乙机使用低压发射器Y1,将使测量结果误差增大。
接收主机开机,短按按键即切换为远程核相界面。在空旷地带手握主机,正面水平朝上,等待GPS卫星授时成功再开始测量。观看相位值。依据两台主机相位结果计算相位差值:相位差值=甲机Y相位值-乙机Y相位值。操作示意图如下:
显示界面图说明:
显示内容 | 结果注释 |
相位值Y:188° | Y发射器测量线路的相位值 |
F:50.0Hz | 线路频率 |
测量时间:15:05:05 | 本次测量的时间 |
下次测量时间:15:05:10 | 下次测量的时间 |
2015/09/15 15:05:08 | 当前北京时间 |
GPS模式/授时模式 | 当GPS信号良好时为GPS模式, 当GPS信号弱时为授时模式 |
授时时长:00:00/00:30 | 进入授时模式工作的时长 |
GPS信号:良好/弱/无/无功能 | 良好:少收到了3颗卫星。 弱:收到过信号,但无时间信息。 无:开机后未收到过GPS信号。 无功能:没有配置GPS功能。 |
卫星数:0/6 | 接收到卫星的个数 |
E114°19′40 N30°29′13″ | 当前地理位置的经纬度 |
提示:
信号良好时,测试使用GPS时钟,其精度较高,同步误差小于10纳秒,相位值引入误差小于0.1度。信号弱时,测试使用仪器内部时钟,其精度比仪器时钟差,1秒误差小于0.5微秒,但误差会随着时间推移而累积,10分钟误差小于300微秒,相位值引入误差小于5度。
结果计算时应统一计算方式,建议相位差值=甲机相位值-乙机相位值。如果结果为负数,则加360度。
如果甲乙两机在短距离范围内(相距小于300米)测量,两发射器的无线信号会相互干扰,可能使测量结果无效。
3、仪器检查与故障判断
检查项目 | 检查方法 | 正常现象 | 异常现象 | 异常处理 |
绝缘杆耐压 | 对照附录A检查耐压性能 | 泄漏电流小于10uA | 泄漏电流大于10uA | 更换绝缘杆 |
发射器功能 和主机功能 | 主机开机,发射器接连自检测试线。 | 发射器工作。主机显示对应发射器的信息。 | 发射器不工作。 | 发射器充电后仍不能正常工作,则发射器故障,返厂维修。 |
发射器工作,主机无对应发射器信息。 | 发射器或主机故障,返厂维修。 |
提示:发射器和主机均应在电池电量有剩余的条件下操作。