供货周期 | 现货 | 规格 | 350*166*179 |
---|---|---|---|
应用领域 | 医疗卫生,地矿,能源,航空航天,电气 | 主要用途 | UPS/EPS,太阳能,直流屏,光伏发电,风能发电,船舶设备,医疗设备 |
应用范围:
太阳能、风能、水力发电储能,风光互补工程;
电信、移动、网络、铁道、机场等各种通信、信号系统备用电源;
舰船、海事等备用电源;海洋信号与航标;
石化系统备用电源;
UPS、医疗设备、应急照明等备用电源
![]() |
参考价 | 面议 |
更新时间:2020-06-13 16:12:20浏览次数:240
联系我们时请说明是化工仪器网上看到的信息,谢谢!
双登蓄电池6-FM-65 12V65AH技术及参数
南都以 产品 文化崛起于中国电池业,是目前中国阀控式密封铅酸蓄电池领域技术企业之一。企业通过了ISO9001质量体系认证、ISO14001环境质量体系认证,蓄电池产品也先后通过CE、FCC、UL等认证。多年来,集团与世界企业进行着广泛的技术交流,在产品研发、技术创新等方面保持着技术合作,公司研发的具有 知识产权的胶体阀控式密封铅酸蓄电池,在国内技术领域处于 水平。胶体阀控式密封铅酸蓄电池系列产品性能指标已达到IEC标准和德国DIN标准要求,产品为国内外信息产业、电力和太阳能储能系统等领域提供了 支持,近年来该系列产品远销欧美等市场,深受用户的好评。
2V、12V系列胶体电池广泛应用于通讯、电力领域中的动力和控制系统,太阳能、风能发电系统,大型UPS和计算机电源及其他直流备用电源等。
南都蓄电池特点: 1、初始容量大,比能量高 采用新型合金板栅材料技术,优化设计的产品结构,容量比同类产品高出5%,比能量达35~38Wh/kg。 2、低温性能* 采用特殊的耐低温添加剂材料,电池能够在-15℃~40℃环境下正常使用。 3、组合一致性 采用 的和膏设备、极板分选取设备、电池动态配组技术,能有效提高整组电池的一致性。 4、高功率放电性能好 正、负极板均采用涂膏式结构,紧装配工艺,内阻小,高功率放电性能好,具有 的起动能力,30°斜坡爬坡轻松自如。 5、安全可靠 安全阀能自动开启,既可以排出由于误操作或免维护过充电导致的多余气体,又能防止外部气体或火花进入电池内部引起自放电或 全密封防泄漏结构:电池可倾斜、卧放使用,但不允许倒置。 6、使用寿命长 长寿命活性物配方,具有*的耐深循环充放电能力,在25℃下,80%DOD循环寿命可达600~700DOD寿命循环达300~350次。 7、绿色环保 电池以绿色环保为本,采用新型密封结构优化设计,确保使用过程无漏酸及酸雾溢出现象,安全可靠。 8、免维护 密封反应效率高,电池在整个使用过程中无需 或补酸维护。
南都Narada蓄电池应用领域与分类: ◆ 免维护无须补液; ● UPS不间断电源; ◆ 内阻小,大电流放电性能好; ●消防备用电源; ◆ 适应温度广; ●安全防护报警系统; ◆ 自放电小; ●应急照明系统; ◆ 使用寿命长; ●电力,邮电通信系统; ◆ 荷电出厂,使用方便; ●电子仪器仪表; ◆ 安全防爆; ●电动工具,电动玩具; ◆ 特配方,深放电 性能好; ●便携式电子设备;南都蓄电池
功能特点:阀控密封式免维护铅酸蓄电池采用高性能极板、新技术AGM隔板、高纯度电解液及ABS材料池壳制成,综合性能与一般普通阀控铅酸蓄电池相比有如下特点:
1、长寿命
采用添加稀土金属的铅合金制造板栅,比一般铅钙锡合金板栅电池的寿命提高25%;
加强正板栅筋条,耐腐蚀性比传统设计有较大提高。
2、绿色环保
采用分层封口技术,杜 电池的漏酸、爬酸现象,有效防止酸雾对设备和环境的腐蚀。
3、高可靠性
利用 的装配工艺结合严谨的质量管理体系,提高电池抗震性能,有效避免电池的虚焊和假焊以及在运输和使用中因震动而造成的故障;
电池内阻均一性高,大大改善多组电池并联使用时出现不均一的现象。
4、内阻小
采用添加特种超细纤维的隔板,提高正、负极板的反应接触面,使电池内阻大幅度降低,并可以改善在使用过程中不会出现因隔板的耐疲劳性下降而内阻升高的现象;
采用50-60kps装配压力,有效改善注酸后极群压力减少导致电池内阻在使用异常增大的现象出现。
5、自放电小
使用分析纯级别 电解液,合理的配置添加剂,有效降低电池自放电速率。
6、高安全性
进口橡胶制成的 安全阀,动作有效性持久、抗老化、抗腐蚀,有效地确保产品在使用过程中内部压力的安全性。
、安装维护:
容量不同、性能不同、生产厂家不同的蓄电池不可链接在一起使用。
◆实际容量相同的蓄电池或蓄电池组方可串联使用。
◆实际电压相同的蓄电池或电池组方可并联使用。蓄电池链接和引出请用合适的导线。
◆链接是务必切断电源,否则会有触电甚 的
◆正负极不得接反或短路,否则会使蓄电池严重受损,甚发生
◆紧密地链接好端子螺栓部分,防止火花产生;若接触面被氧化,可用苏打水清洗。
◆新安装的蓄电池组在使用前应进行72小时浮充充电使蓄电池内部电量均衡,方可进行测试或使用
◆蓄电池荷电出厂,不得试图拆卸蓄电池避免发生 ,如不慎蓄电池壳 损,接触到酸液,请立即用大量清水冲洗,必要时请立即就医。
◆不能将蓄电池放置于密封容器内使用,否则会有 的
◆不能使用 清洗蓄电池。
◆多只蓄电池串联可获得高电压,安装时应注意使用 缘工具,防止
◆安装时应拧紧螺母,以防止充放电时产生火花。
◆蓄电池不可倒置使用,否则会有电解液漏出。
◆蓄电池寿命终止时,应妥善处理,随意遗弃会造成环境污染。
双登蓄电池6-FM-65 12V65AH技术及参数
南都蓄电池持续监测保证不间断电源(UPS)可以随时启用
越来越依赖技术为我们提供安全感:相机、应急电话甚安全照明都给人可靠的感觉,让我们明白,如果需要,可以随时使用它们。确保紧急情况下的可用性依赖于不出差错的电源,这相应意味着高品质的备用电池。但是,如何知道备用电池真的不出差错呢?
这个问题困扰着依赖电池提供应急电源的设备制造商。如何知道在需要的时候,它能够发挥作用,这对于不间断电源(UPS)制造商尤其重要,蓄电池因为UPS的唯1用途是在主电源发生故障时确保计算机系统或医疗设备的电力供应。在这些情况下,电力提供和在确定的时间与供给容差范围内供电是极其必要的。
大多数备用电池使用多个阀控铅酸蓄电池(VRLA)做成整体电池组。虽然称作“免维护”,但这项技术有*的不足,其中的任何一个都可能造成电池低效甚*不起作用。
因此,弱、老化或其他“不健康”的电池构成这些系统的严重危险,需要定期维护检查它们的健康状态(SOH)与荷电状态(SOC)。不论这些维护多么频繁,在维护检查间隙仍有发生电池故障的风险。为了克服这种状况,一些公司正转向提供持续原位SOH和SOC监测的系统。
2持续监测
持续监测似乎是个简单的解决办法,但在现实中面临经济上的难题。持续监测方案通常需要增加50%的电池成本,如果把安装和运行考虑在内,增加比例甚高达70%。面对这么高的成本,在提示电池寿命终结的平均*时间(MTBF)之前定期更换电池,可能是更经济的做法。然而,蓄电池例行维护一样,这也充满不确定性,因为环境条件对电池的MTBF有很大影响。
制造商因而把目光转向低成本的持续监测系统,全面诊断电池在各个条件下的SOH和SOC。2007年3月,供应这类智能变送器的专业公司LEM与密封及排气式铅酸电池诊断和管理领域的机构RWTH亚琛大学合作,确立了的低成本电池监测管理的发展方向。
在其他制造商追逐更“时尚”的电池技术时,RWTH亚琛大学则已建立起技术中心并增强其力量,集中研究为成熟和普遍销售的电池化学工艺。LEM-亚琛结成长期合作关系,共同研究VRLA富液和胶体电池的故障模式,开发包括SOH和SOC在内的下一代监测与分析系统。
通过这种合作和了解用户需要,LEM持续开发用于持续监测的“Sentinel”解决方案,终于研制出一代产品SentinelIII。Sentinel能够测量电池电压、内部温度和内部阻抗,其诊断测量水准可媲美高度复杂且昂贵的实验设备,但成本因素使其可用作持续监测方案。
为了开发Sentinel,如图1所示,LEM使用上述实验设备并选用众多的电池样品和,进行广泛的研发。在这个项目中,Sentinel运用和复制了电化学阻抗频谱分析法。在解释高性价比的单芯片解决方案中如何复制这项技术之前,值得我们确切说明的是它实现的诊断水准以及如何保护基于电池的UPS的完整性。
用于评估监测装置的测试设置
3老化问题
这类系统大多采用铅酸电池技术,蓄电池*的技术缺陷是老化导致容量衰减,内阻升高。不过,由于这项技术如此成熟,老化状况也广为人知,因而能够通过探测几种情况确定老化状况。
容量降低是尤其普遍的影响之一,这基本是电池的使用模式造成的。在UPS内部,电池以高电流放电,导致电极上生成大的晶体。可通过适当调节电池,部分地控制这种状况,但事实证明在严重情况下这是不可逆的。这种情况也会生成小的晶体,称作“树枝晶”,如果没有探测到的话,可能会连在一起造成电池短路。
内部腐蚀使端子的薄片落到电极上,也可能造成短路。导致腐蚀的重要因素包括温度、电压和局部酸液浓度,通常影响正子。这些老化效应都导致电池容量或电量损失,因此任何一种诊断都必须能够鉴别它们,以便在灾难性故障发生之前采取适当行动。
以上效应导致电池容量或电量降低。任何一类诊断都应当以鉴别这些老化效应为目标。
在已进行的测试中,使用电化学阻抗谱蓄电池(RWTH亚琛大学的EISmeter分析仪)进行全谱测量,运用一系列的正弦波形测量电池,测得整个频谱的阻抗。通过傅立叶分析计算给定频率的实际和假想的电压响应部分,得出测量结果。通过分析电压响应与励磁电流的幅角及相角关系,获得复杂的阻抗结果。
对于Sentinel解决方案而言,这是不切实际的,因为做到这一点所需的处理能力会使持续监测系统的任何解决方案失去商业可行性。因此,我们面临的挑战是开发这样一种方法:只能使用一种频率进行测量,但能获得堪比EISmeter的结果。
4趋势分析
测量结果显示,用EISmeter和用Sentinel测得的两个数值非常一致。虽然使用Sentinel反馈的数值稍高,但这容易通过校准予以补偿。但是,基于电池诊断的目的,对于重要性来说,这种偏差是相对而非的。由于测量是持续进行的,因此,重要的是从结果中清楚看出趋势数据。这些数据加上均采用单一集成电路测得的温度和电压值,构成Sentinel解决方案的信息基础。
Sentinel是第1个用于监测VRLA和富液电池的单块集成电路(系统芯片),蓄电池能够测量单个电池和整个电池的内部温度、电压和标准阻抗。每个SentinelIII模块监测标称电压在0.9V到16V之间的单个电池或电池组,通过S-BUS总线的通讯总线向S-BOX的数据记录器报告数据。
Sentinel的功能是取得测试的关键电气参数,以确定电池能否在主电源发生故障时发挥作用。
单个串行总线多可以接入250个而多设定为六组的Sentinel模块,多可监测六条浮动/放电电流,使安装变得极其轻松,只需使用预设端子的数据总线电缆将插头插入插座即可。
每个Sentinel都有温度测量工具,持续测量直接固定在电池盒上的传感器片探测到的单个电芯的外表温度。这对于探测潜在的热失控来说是*的,也使智能温控测量单个电池温度,使绘制电池温度分布成为可能。在此之前,这还是一项费用昂贵的附加服务。
LEM1无二的真实能量层阻抗测量法以及更强大耐久的测试电流,确保每次测得的结果准确且可重复。采用设定频率通过对整个电池进行多次“短时微放电”测量阻抗,阻抗与频率的关系
起初,这个单一的较长预处理脉冲动作在开始绘制测量脉冲之前,把电芯带入正确的“能量层”状态。后者生成不同的电芯电压响应,结合脉冲电流参照值,提供阻抗值。
Sentinel的阻抗测试方法只涉及所测试的电芯。不需要通过电池部件的高电流,并且内阻测量过程不干扰直流线路。
这是次在单芯或整个电池监测中综合测量温度、阻抗和电压。SentinelIII(外形见图4)系统能够准确测量温度(误差+/-2°C,测量范围为–10°Cto+70°C)、放电(动态)(+/-0.5%)和浮动(静态)电压及纹波电流,是目前在售的全面的电池监测系统。
另外在设计上,SentinelIII安装简单,南都蓄电池花费的时间约为安装其他系统所需时间的四分之一。这是通过单片电路设计和简化通讯系统实现的。各立单元采用LEM的S-BUS总线的专有通讯总线,立运行,却由S-BOX的中央智能单元直接控制。监控器和数据记录器有全面的警报参数和数据存储装置()。
监控器和电池数据记录器
正是详细的测量加上智能化的数据分析,才能提供关于真实电池状况和可用性的可靠报告。SentinelIII提供电芯或整个电池的准确温度、电压和阻抗数据。中央数据记录与分析单元的软件跟踪一定时间的数据变化情况,提取趋势信息,随时向用户提供备用电池投入使用后的真实性能。在单个电芯或整个电池层面,系统鉴别出故障的电池组件,针对*失效生成警报,并请求进行人工检验。由于S-BOX盒也接入网络服务器,可通过互联网查看所有的性能、趋势和警报数据;以标准信息形式提供非紧急状态更新数据,使管理员可从世界任何地方监测装置。
由于Sentinel本身由受监测的电池供电,因此设计上在多数时间维持“睡眠”模式,只在进行测量时才“唤醒”。唤醒周期用时不足100ms,大约每(5-10)min唤醒一次。鉴于SentinelIII分散内部电阻的测试载荷电流,为减小内部温度上升,阻抗测量周期的短时间为10min。与电池参数变化的时间相比,南都蓄电池这个间隔很短,实践中许多操作员会要求延长阻抗测量周期的间隔。因此,在大多数时间里,Sentinel消耗极少的主电池电量。
考虑到对复杂电子装置依赖程度的日益加深,UPS系统可能更多地使用铅酸电池。单个电芯发生故障可能引发采用UPS作为应急电源的系统灾难。但是,使用LEM的Sentinel可以预测、防止系统灾难的发生,从而在间接损害发生之前,提早进行高性价比的校正。
LEM坚信,持续监测对这些应用有重要意义,但它的成本不应超过电池成本的15%。因为我们已经知道,大多数故障模式中是阻抗发生了变化,所以,迄今为止这是探测电池失效退化的有效方法。为了获得真实的读数,必须在足以穿透当前“表面”负荷的电流水平上测试电池,为此开发的Sentinel也能自动优化阻抗信号测试水平。