供货周期 | 现货 | 规格 | 12V系列 |
---|---|---|---|
货号 | 135216854 | 应用领域 | 医疗卫生,能源,电子/电池,道路/轨道/船舶,电气 |
主要用途 | 控制系统,电动玩具,应急灯,电动工具,报警系统,应急照明系统,备用电力电源,UP |
SOTA蓄电池XSA121000 12V100AH参数规格
![]() |
参考价 | 面议 |
更新时间:2020-06-24 14:41:07浏览次数:165
联系我们时请说明是化工仪器网上看到的信息,谢谢!
SOTA蓄电池XSA121000 12V100AH参数规格
SOTA蓄电池XSA121000 12V100AH参数规格
SOTA蓄电池系列很多,应用也非常广泛,不同系列所针对的应用是有区别的。
UPS电源在设计时需要考虑以下三个方面:
1.可用性
数据处理中心日益增长的可用性需求.推动着UPS配置的不断发展.“可用性”即电源保持供电并正常运行以支持关键负载的时间百分比估算值。如同其它任何模型一样,为简化分析过程,必须对模型做出一些假设·因此,本文中的可用性值要比实际应用中的可用性高·为便于比较挤
2.等级
一切UPS系统(以及配电设备)都需要定期进行维护。系统配盖的可用性一方面取决于配置不受设备故障干扰的水平,另一方面取决于执行正常维护和例行渊试以保证关键负载供电的能力。研究机构UptimeInstitute一篇名为"IndustryStandardTierClassificationsDefineSiteInfrastructurePerformance”的文档中进一步讨论了此主题。UptimeInstitute文档中所述的等级概念涵盖了本文中提及的5种UPS结构。
3.成本
配置的可用性等级越高,其成本也越高。该成本指的是建造一间新的数据扫偏所需的成本。因此,其中不仅包括UPS结构的成本,还包括数据扫偏的整个网络关键物理墓础设施(NCPI)的成本。后者包括发电机、开关装置、制冷系统、消防系统、活动地板、机架、照明设施、物理空间和整个系统的调试成本.这些只是前期成本,还不包括运营成本,如维护成本等。在计算上述成本时,我们假设每个机柜平均占地面积为2.79m2,且功率密度范围为每机柜23kW至3.8kW。如果分担成本的设备占地面积增大,每机架的成本也将随之降低。
一直以来,在规划关键负载电源时,必须充分考虑以后的发展,以使UPS系统可以为负载提供10或15年的支持。事实证明,按照这一原则进行规划是很困难的。20世纪90年代,为便于提供讨论框架并比较各种设施,曾提出了“瓦特/平方面积”的概念。但由于人们对“平方面积”的含义无法达成共识,这种电源设计指标造成了很多误解。近来,伴随着技术梢简的大趋势,人们逐渐采用“瓦特尹机柜”的概念来表示系统容量.
事实证明,由于单位空间内的机架数里很容易统计,因此这种度盆方式的准确性更高。无论如何选择负载方式,有一点很重要,那就是应当从一开始便选择好配置方案,使设计过程沿着正确的方向进行。
如今,涌现出了许多可扩展的模块化UPS系统设计,从而可以使UPS电源容量随着IT需求的增长而扩大。
SOTA蓄电池技术规格参数:
电池型号 | 额定电压 (V) | 额定容量 (AH) | 电池长度 (mm) | 电池宽度 (mm) | 电池总高 (mm) | 重量 (Kg) |
SA12100 | 12 | 10 | 151 | 98 | 100 | 3.58 |
SA12120 F2 | 12 | 12 | 151 | 98 | 100 | 4.23 |
SA12170 | 12 | 17 | 181 | 76 | 167 | 6.06 |
SA12180 | 12 | 18 | 181 | 76 | 167 | 6.23 |
SA12260 | 12 | 26 | 166 | 175 | 125 | 9.08 |
SA12350 | 12 | 35 | 192 | 130 | 170 | 10.2 |
XSA12350 | 12 | 35 | 192 | 130 | 170 | 10.8 |
SA12400 | 12 | 40 | 196 | 165 | 170 | 14.59 |
XSA12550 | 12 | 55 | 229 | 138 | 228 | 18.1 |
SA12650 | 12 | 65 | 350 | 166 | 174 | 23.66 |
XSA12800 | 12 | 80 | 260 | 168 | 221 | 26.5 |
XSA12900 | 12 | 90 | 304 | 169 | 229 | 31.18 |
XSA121000A | 12 | 100 | 329 | 172 | 221 | 32.94 |
XSA121000B | 12 | 100 | 407 | 173 | 235 | 32.94 |
XSA121200 | 12 | 120 | 407 | 173 | 235 | 38.41 |
XSA121350 | 12 | 135 | 342 | 172 | 277 | 42.5 |
XSA121500 | 12 | 150 | 483 | 170 | 241 | 47.13 |
XSA122000 | 12 | 200 | 520 | 260 | 240 | 66.00 |
本文主要分两个章节讲述UPS电源的监控系统选择与应用相关知识,本节主要讲述了什么是UPS监控系统?使用UPS电源监控系统的必要性
一、UPS电源监控系统定义
UPS电源监控系统,有狭义和广义之分。狭义的UPS监控系统是指对UPS的运行状态进行监测、管理的一种解决方案;广义的UPS监控系统则是指不但要对UPS本身的运行状态进行监测、管理,同时对以UPS为中心动力环境系统进行监测、管理及控制的一套全面的UPS供电安全管理系统。UPS监控系统是伴随着UPS技术和产品的发展而发展起来的,是UPS供电系统的重要组成部分。
二、使用UPS电源监控系统的必要性
要了解使用UPS电源监控系统的必要性就必须要了解为什么要对UPS实施监控呢?之所以要对UPS实施相应的监测、管理,其实是由传统的UPS系统本身的局限性所决定的。
(1)单机故障率高,且经常影响所支持系统的持续正常运转。传统的单机UPS并无备用线路或应急方案,所有的电力供应线路都为单线,一旦发生问题,电力供应中断就在所难免。这种情况一旦发生并进一步蔓延,若没有及时做相应的应对措施,极有可能造成无可挽回的损失。
(2)可扩展性差。传统UPS的配置固定,且不能升级,如遇信息系统升级而导致要求提高电力供应能力时,解决途径就是购买新的UPS。再有,UPS供电系统本身只能保障供电的安全性,其对动力环境的监测和管理却无能为力。
(3)维护成本高。传统UPS电源系统的维护是一项技术水平要求颇高的工作,就普通的更换电池工作来说,这要求由专业的技术人员来完成,用户一般不会自行更换,这就造成后期的维护带来巨大的交通成本与时间成本。
(4)管理难度大。所有的电池或电池组在功能和使用上没有区别,当其中的某一块电池发生故障后,UPS电源对其不能进行及时地关闭和替换,只能报告发生了系统故障,然后由管理人员手工进行更换;另外国内多数中小机房无24小时值班人员,一般用巡查方式,不能时间发现隐患,非上班时间、节假日等如存在安全隐患,相关管理人员无法时间获知并做相应的处理.
此外就是,对UPS电源进行自动化规范化管理,是真正实现UPS供电系统安全可靠的关键一步,也是实现机房无人值守的现代化机房建设目标的重要内容。
比如艾诺斯集团融合了SOTA电池100多年的蓄电池研究、生产经验,在SOTA蓄电池系统可靠性、安全性和高效性方面得到全面的提升,基于应用和环保的设计理念使英国SOTA蓄电池Supersafe TE系列电池在安装地点和安装方式上有了大的灵活性,能够给系统集成商或者终用户提供的解决方案,因此SOTA蓄电池Supersafe TE系列在范围的通信、电力、石化、冶金、金融中心、数据中心、地铁、会展以及新能源等领域得到了广泛的应用。
EPS应急电源是UPS电源衍生发展而来,EPS应急电源是电力系统的重要的后备电源,FEPS是其发展而来的消防产品,在使用中要正确的运用以及维护,否则将对电力系统的稳定造成不可估算的损失。在安装调试好EPS应急电源之后,须对其依据相关规定严格进行仔细的检查。以下介绍EPS消防应急电源现场检查项目、技术要求、不合格情况等的判断方法。
检查项目技术要求不合格情况描述:
主要部件检查消防设备应急电源所使用的电池制造商、型号和容量等是否与检验机构出具的检验报告所描述的一致。所使用的电池是否与检验机构出具的检验报告所描述一致。
功能检查在主电源故障情况下,消防设备应急电源应能按标称的额定输出容量为消防设备供电,使由其供电的所有消防设备处于正常工作状态。
检查方法:
(1)主要部件检查。对照检验报告检查消防设备应急电源所使用的电池的制造厂、型号和容量。
(2)功能检查。确认消防设备应急电源与由其供电的消防设备连接并接通主电源,处于正常监视状态。断开主电源,观察消防设备应急电源和由其供电的消防设备的工作状态情况。