| 注册| 产品展厅| 收藏该商铺

行业产品

当前位置:
山东恒泰正宇电源科技有限公司>>国产蓄电池>>东洋蓄电池>> 6FM22TOYO蓄电池6FM22 12V22AH型号规格

TOYO蓄电池6FM22 12V22AH型号规格

返回列表页
  • TOYO蓄电池6FM22 12V22AH型号规格
  • TOYO蓄电池6FM22 12V22AH型号规格
  • TOYO蓄电池6FM22 12V22AH型号规格
  • TOYO蓄电池6FM22 12V22AH型号规格
  • TOYO蓄电池6FM22 12V22AH型号规格
收藏
举报
参考价 面议
具体成交价以合同协议为准
  • 型号 6FM22
  • 品牌 其他品牌
  • 厂商性质 经销商
  • 所在地 济南市
在线询价 收藏产品

更新时间:2020-06-22 18:12:54浏览次数:231

联系我们时请说明是化工仪器网上看到的信息,谢谢!

同类优质产品

更多产品

产品分类品牌分类

更多分类

产品简介

供货周期 现货 规格 12V系列
货号 412341684 应用领域 医疗卫生,能源,电子/电池,道路/轨道/船舶,电气
主要用途 控制系统,电动玩具,应急灯,电动工具,报警系统,应急照明系统,备用电力电源,UP
控制系统,电动玩具,应急灯,电动工具,报警系统,应急照明系统,备用电力电源,UPS,电力系统,电信设备,消防和安全防卫系统,铁路系统以及发电站等。
TOYO蓄电池6FM22 12V22AH型号规格

详细介绍

TOYO蓄电池6FM22 12V22AH型号规格

TOYO蓄电池6FM22 12V22AH型号规格

 

购买铅酸蓄电池 请谨慎选择 供货渠道 防止购买假货

东洋电池的容量是什么来界定的?

蓄电池实际容量包括活性物质量、极板厚度、活性物质孔率、活性物质的真实表面积、极板的中心距、活性物质的组成;二是使用时的因素,包括放电的电流密度、放电的终止电压、电解液的温度和电解液的密度。

注意事项

(1)非专业人士不得打开蓄电池,以免危险,如不慎电池壳破裂,接触到硫酸,请用大量清水冲洗,必要时请就医。
(2)使用多个电池时,要注意电池间的连线正确无误,注意不要短路。
(3)使用过程中应避免强烈震动或机械损伤
(4)使用上、下带有通气孔的电池容器以便散热。
(5)请不要让雨水淋到蓄电池,或者将电池浸入水中。
(6)电池的清扫请用尽量拧干的湿抹布进行,请不要使用干布或掸子等,请勿使用化学清洗剂清洗电池。

(7)请勿在同箱中混用容量不同,新旧不同,厂家不同的电池。
目前,蓄电池监测模块大多都是电压巡检仪,在线监测电池的浮充电压,在超出设定值时给出报警。相对以前的整组电压监测方式来说,单体电压监测是前进了一大步,但对于电池的*运行过程中的容量衰减以至失效的监测,电压能反映的问题非常有限:100Ah的电池和衰减至10Ah的电池在浮充电压上的差异很难区别开来。因此,需要从蓄电池的失效模式进行探讨,从而解决蓄电池的监测问题。
阀控铅酸蓄电池的失效模式
对于阀控式铅酸电池,通常的性能变坏机制有以下几种情况:
1、热量的积累
开口式铅酸电池在充电时,除了活性物质再生外,还有硫酸电解质中的水逐步电解生成氢气和氧气。当气体从电池盖出气孔通向大气时,每18克水分解产生11.7千卡的热。
而对于阀控式铅酸电池来说,充电时内部产生的氧气流向负极,氧气在负极板处使活性物质海绵状铅氧化,并有效低补充了电解而失去的水。由于氧循环抑制了氢气的析出,而且氧气参与反应又生成水。这样虽然消除了爆炸性的气体混合物的排出问题,但是这种密封式使热扩散减少了一种重要途径,而只能通过电池壳壁的热传导作为放热的途径。
因此,阀控铅酸电池的热失控问题成为一个经常遇到的问题。
阀控铅酸电池依赖于电壳壁的热传导来散热,电池安装时良好的通风和较低的室温是很重要的条件。为了进一步降低热失控的危险性,浮充电压通常具体视不同的生产者和不同室温而定。厂家一般都给出电池的浮充电压和温度补偿系数。
2、硫酸化
阀控式比开口式电池更易产生的问题是负极板的硫酸化。这是由于:
1)氧的循环引起的负极板较低的电位;
2)在强酸电解质汇集的电池底部形成的酸的分层,在这种不流动,非循环的电解质系统中是很难避免的。
这两个都可能在浮充条件下产生一定数量的残留硫酸盐,然后转变成性的硫酸盐形式。因此,当极板加速去活化时,可用的放电安时容量就会减小。随着负极板温度的升高,这种状况会更加恶化。由于氧循环反应的发生,负极板表面被氧化,相当数量的热释放出来。
3、正极板群的腐蚀和脱落
阀控式铅酸电池中,这种形式的性能变坏本来就更加严重。由于氧循环反应,负极活性物质被持续氧化生成硫酸铅,有效地维持了放电状态,因此降低了负极板的电位。而对于给定的浮充电压正极板群的电位则相应较高。因而氧化气氛加剧了,引起了更多的氧气的析出,使活性物质的腐蚀与脱落加剧。
4、电池的干涸
在使用期间气体再复合机制的有效率不是*,水被电解生成氢气和氧气的速度虽然低于相同大小的富液式电池的电解速率的2%,但水还是会逐渐失去。
当失水是主要的失效原因时,电解质的比重将会增加,当比重由初的1.30增至1.36时,表示失水度约达到25%。在失水度达到25%时,酸的高浓度加速了硫酸化,电解质比重又开始下降。电池电压直接正比于电解质比重,因此电池电压并不是电池健康状况的可靠显示。
5、负极上部铅的腐蚀
正极板栅和极群的腐蚀性在铅酸电池的各个设计中都是本来就有的。与之形成明显对比的是负极板位于高度还原气氛,在开口式电池中位于极群汇流排通常浸在电解液液面以下,这样就避免了由于正极板群上冒出的氧气而产生的侵蚀。但是阀控电池的许多设计没有保护极板板耳、极群和汇流排,特别是两者之间的焊接接头。因此,它们暴露在从氧循环中逃溢出来、在电池板群上部的连续的氧气气流中。依赖于板栅(板耳)和极群所选铅合金的一致性和生产质量(需要板栅部分*溶化焊接和汇流排的低孔隙率),迅速氧化可能就会发生

产品技术规格

型号

额定电压

十小时率容量 AH

大外型尺才(长*宽*高)

大约重量

 

(V)

 

Kg

6GFM24

12

24

176

166

128

8.5

6GFM38

12

38

198

166

170

14.5

6GFM50

12

50

264

171

224

19.5

6GFM65

12

65

350

167

185

25.5

6GFM90

12

90

415

175

233

31.5

6GFM100

12

100

415

175

228

32.0

6GFM150

12

150

496

205

241

54.0

6GFM200

12

200

497

260

241

67.5

蓄电池监测系统的研制
为了给蓄电池提供良好的运行环境,在线监测电池的工作状况,电池管理系统(BMS-BatteryManagementSystem)应运而生,成为高可靠电源系统的关键一部分。
1、电池单体的内阻测量
内阻R反比于传输电流的横截面积A。活性物质的脱落、极板板栅和汇流排的硫酸化和腐蚀、干涸都可降低有效的横截面积A,所以可通过测量内阻来检测电池的失效。
内阻和电池状态的相关程度可变性很大。从报导的相关性来看,变化范围从0%到*。英国电子协会(ERA)对用阻抗监测的实验室设计和商用设计两种产品进行了大量的电池调查,发现二者的准确性在50%以上。一个基本的困难是测量小变化数值的精度问题。正常的300安时备用电流的电阻仅在0.25×10-3欧姆的数量级。因此,很小而且有意义的电阻变化可能观察不到。在下面的操作环境下,问题更加严重。
1)在线测量期间存在的变压器的“噪音”和浮充电压波动引起的干扰。
2)腐蚀裂纹对内阻的影响是有高度方向性的,内阻数值对平行于电流方向的裂隙是相对不敏感的。
3)电解质浓度的变化,继而电池的变化使得结果很难解释。
虽然内阻测量法很难准确测量电池的容量,内阻/容量的对应关系很难复现,但对于BMS来说,内阻测试只是用于电池单体之间的比较,而且计算机可以对内阻的变化进行记录和数据处理来预告电池容量衰减和失效,因此,内阻测试对于BMS而言是关键技术之一。
对于离线或电池开路情况下测量内阻而言,测量时可方便地将激励电流回路与电压测量回路以4端子方式与电池组中的单体相连接,但对于在线测量,很难解决激励和测量的问题。
目前大多采用在电池组两端并联放电器,因为有充电器和电池组并联,需要将充电器停止工作,而且要实时同步测量电池的电流变化和电压变化,很难处理采样干扰。
采用中点抽头的激励装置,与目前采用的在电池组正负极两端施加激励的内阻测试装置相比,由于连接了中点抽头,激励装置的电流通过中点抽头后经上部电池组和下部电池组到达电池组的正极和负极,消除了电池组外部充电器和用电负载的并联影响,在电池上产生了稳定的电流激励,能够准确测试电池的内阻。
2、系统结构
一般系统中阀控铅酸蓄电池(VRLAB)的配置一般是:
500kV变电直流系统:2组全容量电池,3台充电机。
220kV变电直流系统:1组全容量电池,2台充电机。
110kV变电直流系统:1组全容量电池,2台充电机。
以108只2V、18或19只12V电池为主。电池的安装摆放形式也差别很大,电池与操作间的距离不确定。
BMS由控制单元、测量模块、相关软件和辅助部件构成,一个控制单元可接入多个测量模块,完成对不同只数和不同电压的多组蓄电池的监测管理。控制单元用于数据传输、数据处理及人机界面控制,具有RS-232连机接口和RS-485远程(集中)管理接口、测量模块控制接口、操作键盘、显示面板、声光报警及报警输出控制接点。控制单元实时显示电池数据,智能分析数据,对异常的电池运行情况进行及时报警。
测量模块用于蓄电池数据的巡检,内置CPU独立高速工作,除进行常规电压、电流、温度等测量外,与内阻测试模块连接后可准确在线测试电池内阻。测量模块安装在电池附近,与控制模块之间通讯连接,方便现场接线安装。

东洋蓄电池产品特点:

东洋电池胶体电池是目前世界上各项性能越的阀控式铅一酸免维护蓄电池,也是目前中国市场上惟一纯进口的蓄电池.它在使用时性能稳定,可靠性高,使用寿命长,具有以下的技术特点: 

1、采用固体凝胶电解质。在同等体积下,电解质容量大,热容量大,热消散能力强,能避免一般蓄电池易产生的热失控现象。对环境温度的适应能力(高、低温)强。
2、内部无游离的液体存在,无内部短路的可能。
3、电解质浓度低,对极板腐蚀弱;浓度均匀,不存在酸分层的现象。
4、采用无锑合金电池极板,电池自放电率极低,在20摄氏度下电池存放两
年不需补充电。
5、*的承受深放电及大电流放电能力,有过充电及过放电自我保护,电池在100%后仍可继续接在负载上,在四周内充   电可恢复至原容量.
6、长时间放电能力及循环放电能力强.
7、采用高灵敏度低压伞式气阀(德国阳光公司),无渗液\鼓胀现象。
8、采用滑动密闭技术(德国阳光公司),即允许由电化学反应必然产生的电池使用后期的的极柱生长,又能保证其*   的密封性能。
9、大容量电池(A600系列)采用正极管式极板,电池单体大可做到 2V 3000AH;浮充使用寿命长可达20年
一直以来,业界对工频UPS和高频UPS的概念有各种定义,给用户造成了不少混淆。主要的定义方法有以下两种:一是逆变器调制频率论。即逆变器调制频率高于20kHz的UPS称为高频UPS,低于这个频率的UPS称为工频UPS。这种定义方式经不起推敲的地方在于,如果以逆变器调制频率来定义,那么不仅应该有高频UPS,还应该有中频UPS。而“工频UPS”的说法就师出无名了,因为,目前UPS的逆变器调制频率大多为4~8kHz,根本没有以工频(50Hz)来调制的。二是整流器调制频率论。这也是普遍被接受的一种定义方法。即如果整流器是工频整流(如晶闸管整流),则称为工频机,否则称为高频机。这种定义方法,在一段时间内确实为业内外普遍接受。但随着UPS技术的发展,这种定义方法也显现出了其不严谨的地方,无法对现有的UPS机型进行准确分类。
只有从UPS的拓扑结构上,才能对两类UPS进行准确分类。从拓扑结构上可以看到,两类UPS的大区别在于升压环节的处理。带变压器的UPS,通过变压器在逆变器后端进行交流升压;无变压器的UPS,通过直流斩波在逆变器前端进行直流升压。
因此,依照上述原则,如果一定要使用高频或工频的概念进行分类,那么更准确的高频机或工频机的定义是:通过高频直流斩波升压的UPS称为高频机;通过逆变器输出变压器进行交流升压的UPS称为工频机。
所以,一台高频机即使外加了输出变压器也不应称为工频机,因为此变压器没有升压作用;而一台工频UPS即使采用IGBT整流也不应称为高频机,因为其升压环节是变压器。

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~
二维码 意见反馈
在线留言