供货周期 | 现货 | 规格 | 12V系列 |
---|---|---|---|
货号 | 432135 | 应用领域 | 医疗卫生,能源,电子/电池,道路/轨道/船舶,电气 |
主要用途 | 控制系统,电动玩具,应急灯,电动工具,报警系统,应急照明系统,备用电力电源,UP |
FirstPower蓄电池LFP12160 12V160AH/10HR
![]() |
参考价 | 面议 |
更新时间:2020-06-18 17:14:43浏览次数:239
联系我们时请说明是化工仪器网上看到的信息,谢谢!
FirstPower蓄电池LFP12160 12V160AH/10HR
FirstPower蓄电池LFP12160 12V160AH/10HR
随着时间的推移,业内的UPS产品类型逐渐增多。不同类型的UPS适合不同的用途,没有一种类型的UPS适合所有的应用领域。
后备式UPS
后备式UPS是用于个人计算机的类型。在图1所示的结构图中,转换开关设置为选择滤波后的交流输入作为主电源(实线路径),一旦主电源出现故障,就会切换到电池/逆变器作为备用电源。一旦发生这种情况,转换开关必须进行操作,将负载切换到电池/逆变器备用电源上(虚线路径)。逆变器只在电源出现故障时才启动,因此称作“后备式”。这种设计的主要优点是效率高、尺寸小和成本低。如果采用适宜的滤波电路和浪涌保护电路,这些系统还可以提供适当的噪声过滤和浪涌抑制功能。
在线互动式UPS
在线互动式UPS是用于小企业、网站、部门服务器见的设计。在此设计方案中,电池到交流电源的转换器(逆变器)始终连接到UPS的输出端。如果在输入交流电源正常时反向操作逆变器,就会给电池充电。
一旦输入电源出现故障,转换开关就会打开,并通过电池向UPS输出端供电。与后备式UPS拓扑结构相比,由于逆变器始终打开且与输出端保持连接,这种设计进一步增强了滤波效果,并降低了转换瞬态过电压。
使用UPS电源可以解决两个方面的问题,就是意外断电和市电品质差时,UPS电源可以提供及时的供电,保证正常的工作运行和正常的工作效率。
使用UPS电源可以解决两个方面的问题,就是意外断电和市电品质差时,UPS电源可以提供及时的供电,保证正常的工作运行和正常的工作效率。也可以说是UPS的两大主要功能:
应急使用:防止意外断电而影响正常工作.
第二:日常使用:消除市电上的电涌,瞬间高电压,瞬间低电压,电线噪声和频率偏移等电源污染,改善电源质量,提供高质量的电源.
对于这些两大功能,就是一些关于UPS的使用经验希望大家可以借鉴:
带载过轻有可能造成电池的深度放电,分降低电池的使用寿命.
第二:适当的放电有助于电池的激活.如*不停市电,每3月也应人为断掉市电用UPS带负载放电一次,可以延长电池使用寿命.
第三:多数小型UPS,上班再开启,且开机时避免带载启动,下班应关闭UPS;对于网络机房的UPS,则可全天候运行.
第四:勿带感性负载,如点钞机,日光灯,空调等,以免造成损害.输出负载控制在60%左右,可靠性.
电池型号 | 电压V | 容量Ah | 内阻mΩ | 外形尺寸mm | 端子类型 | 重量 |
FP1265A | 12 | 6.0 | 28 | 151 | 65 | 94 | 100 | T1/T2 | F | 2.10 |
FP1270 | 12 | 7.0 | 25 | 2.25 | ||||||
FP1272 | 12 | 7.2 | 25 | 2.30 | ||||||
FP1275 | 12 | 7.5 | 24 | 2.32 | ||||||
FP1285 | 12 | 8.5 | 20 | 2.45 | ||||||
FP1290 | 12 | 9.0 | 19 | 2.65 | ||||||
FP12100A | 12 | 10.0 | 22 | 151 | 65 | 111 | 117 | T2/T1 | F | 2.85 |
FP12100 | 12 | 10.0 | 22 | 151 | 98 | 95 | 101 | T2 | F | 3.50 |
FP12120 | 12 | 12.0 | 19 | 3.60 | ||||||
FP12150A | 12 | 15.0 | 19 | 160 | 76 | 159 | 162 | T3 | C | 4.50 |
FP12150 | 12 | 15.0 | 18 | 181 | 77 | 167 | 167 | T3/T8 | D | 5.00 |
FP12170 | 12 | 17.0 | 17 | 5.20 | ||||||
FP12180 | 12 | 18.0 | 17 | 5.40 | ||||||
FP12200 | 12 | 20.0 | 15 | 5.80 | ||||||
FP12220 | 12 | 22.0 | 14 | 181 | 77 | 166 | 166 | T8 | D | 6.30 |
FP12240 | 12 | 24.0 | 12 | 166 | 175 | 125 | 125 | T3/T8 | D | 8.00 |
FP12240A | 12 | 24.0 | 12 | 165 | 125 | 175 | 182 | T6/T8 | D | 8.10 |
FP12260 | 12 | 26.0 | 12 | 165 | 176 | 127 | 127 | T3 | D | 8.10 |
FP12280 | 12 | 28.0 | 10 | 166 | 175 | 125 | 125 | T3/T8 | D | 8.80 |
后备式-铁磁共振UPS
后备式-铁磁共振UPS曾经是功率范围3-15kVA的应用领域中使用的UPS类型。此设计依赖于一个特殊的饱和变压器,该变压器具有三个线圈(电源连接)。主电源路径通过交流输入电源、转换开关和变压器,后连接输出端。当电源出现故障时,转换开关将打开,逆变器将向输出负载供电。
在后备式-铁磁共振设计方案中,逆变器处于后备式模式,当输入电源出现故障且转换开关打开时,逆变器才被激活。这种变压器具有特殊的“铁磁共振”功能,它能够提供有限的电压调节和输出波形“修整”功能。铁磁共振变压器提供的对交流电源瞬态过电压的保护与任何滤波器一样,甚至更好。但铁磁共振变压器本身会产生严重的输出电压失真和瞬态过电压,这可能造成比交流电源连接不当更严重的后果。即使这种UPS被设计为后备式UPS,铁磁共振变压器也会由于其本身的低效率而产生大量的热量。
另外,这些变压器比常规的隔离变压器体积大,因此后备式-铁磁共振UPS通常非常庞大和笨重。双转换在线式UPS
这是10kVA以上功率范围的电源的UPS类型,除了主电源路径是逆变器(而非交流主电源)外,其余与后备式设计相同。
在双转换在线式设计中,输入交流电发生故障并不会激活转换开关,因为输入交流电一直在给备用电池充电,而由备用电池向输出逆变器供电。所以,在输入交流电源出现故障时,无需时间进行在线运行状态转换。
在这一设计中,电池充电器和逆变器将转换全部的负载功率,并由于产生了更多的热量而导致效率降低。
这种UPS提供了非常理想的供电输出性能。这一设计的可靠性高于其他设计,但功率部件的持续耗损降低了这种可靠性,而且在UPS的整个生命周期成本中,由于电源效率低下而消耗的电能占据了很大一部分。此外,大型电池充电器获得的输入电源通常是非线性的,可能对建筑供电系统产生干扰或导致备用发电机发生故障。
Delta转换在线式UPS
这是10年前引入的技术,它克服了双转换在线式设计的缺点,适用于功率范围5kVA到1.6MW的应用领域。与双转换在线式设计相似,Delta转换在线式UPS始终由逆变器提供负载电压。然而,附加的Delta转换器也向逆变器输出供电。在交流电源出现故障或受到干扰的情况下,这种设计所表现出的行为与双转换在线式设计*相同。
UPS类型总结
下表介绍了不同UPS类型的特征。UPS的特性(如效率)是由您选择的UPS类型决定的。由于技术应用和生产质量对于特性(如可靠性)的影响更大,因此,除了考虑设计特性之外,还必须对以下因素进行评估。
各种类型UPS的工业应用
随着时间的推移,目前业内的UPS产品逐渐包括上述各种类型的设计。
不同UPS类型具有不同的特性,这使得它们能够适用于不同的应用领域。APC产品系列反映了这种多样性,如下表所示:
不同类型的UPS适合不同的用途,没有一种类型的UPS适合所有的应用领域。本文的目的是比较目前市场上不同UPS拓扑结构的优缺点。
产品价格、产品报价、产品图片、产品技术参数;产品安装使用说明、产品性能特点、产品售后服务、产品技术支持。
电池的性能退化一方面是使用和老化的自然结果,另一方面则由于缺乏维护、苛刻的使用环境以及不良的充电操作等等加速其劣化。下面将探讨充电电池各种难以克服的问题、其原因及弥补这些问题的方法。
高的自放电率
各种电池都存在自放电,但使用不当会促使这种状态的发展。自放电率呈渐近线规律,放电率出现在刚充电之后,然后逐渐减小。
镍基电池表现出较高的自放电率。在正常环境温度下,新的镍镉电池充电后,在24h期间其电高量约减少10%。此后,自放电率稳定至每个月约10%。通常温度较高,其放电率也增大。一般的准则是:温度每升高10℃自放电率增大1倍。镍金属氢化物电池的自放电率比镍镉电池约大30%。
镍基电池经过数百次循环后其自放电率也增大,电池的极板开始膨胀从而更紧密地挤压电极之间的隔膜,形成金属树枝状晶体,这是结晶体生长的结果(记忆效应),从而损坏了电池隔膜,增大了自放电率。如果镍基电池在24h的自放电达30%时,应予弃用。
镍离子电池在充电后的24h的自放电率为5%。此后下降至每月1%-2%,电池的安全保护电路增加约3%。高的循环次数和老化对锂基电池的自放电率没有影响。铅酸电池的自放电率约每月5%或者每年50%,重复性的深度循环充放电则使自放电增大。
电池自放电的百分率可用电池分析仪加以测定,但此程序需要数小时。测得的电池内阻常可反映电池的内阻是否过高。此参数可用阻抗计测量或用电池分析仪的欧姆测试程序。
电池的匹配
即使采用了现代化的生产制造技术,电池的容量也不可能准确预测,尤其是对镍基电池。制造过程中,将每个电池以其容量的大小加以检测并分类。高容量“A”类电池通常以优质级价格按特殊用途电池出售;中等容量“B”类电池应用于工业和商业产品;低端“C”类电池则以廉价出售。通过循环充放电并不能改善低端类别电池的容量。购买低价的可充电电池所得的是低电池容量。
在以多个电池组成的电池组中,电池的匹配应控制在±2.5%以内。在组成电池个数多的电池组中,以及需输出大负载电流和在低温下工作的电池组,需要更严格的电池容差控制。在一个新的电池组中的各个电池如果稍有小的失配,在经过数次充电循环后,将能互相平衡自行适应。电池之间能否很好地平衡适应,关系到电池组是否具有较长的使用寿命。
为何电池的匹配如此重要?这是因为一个“弱”电池含有的容量较小,它比“强”电池更快地放充电。这种放电过程的不平衡导致“弱”电池在放电经过低电压时,电池极性会反转。在充电时“弱”电池在被充过程中首*入发热过充状态,而此时较强的电池仍能正常地接受充电并不发热。在这两种情况下“弱”电池处于不利的状态,使它变得更“弱”而导致严重的失配。优质电池比低质量电池的电容量更为一致也更为均衡。对大功率工具应选用高质量电池,因其在大负荷和的温度环境下可有高的耐久性。虽付出高成本,然而其回报是电池组有更长的寿命。
锂基电池从生产线上下来时其本质性能就匹配得很好。在电池组内部各单个电池需符合严格的容差是非常重要的。电池组所有的电池必须在统一的时间之内达到充电满量,而且在放电终结时达到同样的门限电压。电池组内置的保护电路应在电池出现不正常的工作状态时起到安全保护作用。