供货周期 | 现货 | 规格 | 12V系列 |
---|---|---|---|
货号 | 75168414654 | 应用领域 | 医疗卫生,能源,电子/电池,道路/轨道/船舶,电气 |
主要用途 | 控制系统,电动玩具,应急灯,电动工具,报警系统,应急照明系统,备用电力电源,UP |
非凡蓄电池12SP17 12V17AH风力发电
![]() |
参考价 | 面议 |
更新时间:2020-06-03 14:18:23浏览次数:211
联系我们时请说明是化工仪器网上看到的信息,谢谢!
非凡蓄电池12SP17 12V17AH风力发电
非凡蓄电池12SP17 12V17AH风力发电
电池特点:
2 工业标准设计;设计寿命12年(20℃)。
2 采用固体凝胶电解质代替流动电解液,电解液不发生泄漏;电解液密度低、减缓对板栅腐蚀,电池服务寿命更长;电解质固定凝胶中,分部均匀,无内部短路、不存在酸质分层现象;凝胶电解质采用余量设计,热容量大、散热好,无普通铅酸电池热失控现象。
2 高适应恶劣的条件;凝胶电解质采用余量设计,适应高温及过充电。
2 欧洲PVC-SiO2隔板,内阻小,孔率高,循环性能好。
2 极板放射状筋条设计、涂膏式活物质,大电流放电性能好。
2 采用高灵敏低压安全阀,产品使用更安全、可靠。
2 具有低的自放电率,20℃环境温度可存放1年,无需在充电。
2 放电后回充性能好,电池*放电后长时间(小于30天)放置再充电仍可恢复原容量。
2 电池壳体加厚设计, ABS材料,运输、使用中无漏液、鼓壳等危险,安全可
间断电源(UPS)持续扩大应用于企业内部以保护精密且不可断电的设备组件。由于UPS的使用者不断成长,新旧型的UPS也各自运作于厂办内,因此维护管理这些UPS成为一个研究课题。
由网络的普及,UPS与网络联机不像从前困难,使得IT管理者和IT员工能直接集中管理所有UPS。本文将探讨如何通过系统管理所有UPS,以及集中管理UPS的优点。
UPS集中管理的优点
为了保护设备运作不断电,企业纷纷投资UPS解决方案以确保商业运作不中断。然而简易安装UPS并不是终解决方案,管理者需知如何管理控制这些系统,确保他们正常运作。而集中式UPS管理系统的优点就是能立即了解UPS的状况,包括UPS容量与位置、负载、电瓶是否需要充电以及UPS的运作状况。如果能通过一个程序*收集所有信息,并以简易操作的图形接口显示,另加上警告功能,那么管理者只要通过这个集中管理程序,就能够轻易管理上百台甚*千台网络UPS。比起从前一台一台检查UPS状况,集中管理效率得到大大提升。
UPS集中管理联机方式
一般通过以下两种方式集中管理UPS:
1.UPS与计算机串接:
可以在计算机上加装多端口卡以扩充RS232接口,或是将多台UPS统一连接至RS485,再连接到计算机的RS232接口。RS485适用于连接远距的UPS,但随着串接UPS的数量增加,系统监控UPS的时间效率会随着改变─连接愈多台UPS,系统监控UPS所需的时间就会愈长。
2.通过网络收集UPS信息:
我们能以插入SNMP卡或安装UPS软件来通过网络收集UPS信息,因此集中管理软件就必须兼具监控软件及SNMP卡联机的能力。一旦监控的点愈来愈多,网络流量就成为管理系统中的一大问题。为了避免网络流量壅塞,管理软件应该能够随时调整监控需时减少传送网络封包。毕竟,使得企业内部运作流畅才是要务。
通过UPS管理软件提升效能
管理者能通过集中式UPS管理规划电力问题发生时的保护动作。在电力问题结束后,管理可以一步步追踪并找出有问题的UPS,分析电力事件的原因。在UPS的保护之下,管理者对每一次发生的电力事件,会在时间被告知,并提供充分的信息让他知道如何处理设备。
管理者也能根据UPS管理软件提供的UPS状态、型号、负载、电池容量来安排UPS的优先级。例如,发生电源中断且电池容量低于30%时关闭程序启动,管理者能知道哪一个UPS的负载已经超过80%,因此他能考虑是否要换一台更大容量的UPS。集中化UPS管理软件的优点不仅在保护不可断电的设备,同时也减少人力资源的浪费并且增加效率
SP系列 - 设计寿命10 年(10H) | ||||||
电池型号 | 电池电压 (V) | 额定容量 (AH) | 电池长度 (mm) | 电池宽度 (mm) | 电池总高 (mm) | 电池重量 (Kg) |
12SP26 | 12 | 26 | 166 | 175 | 125 | 9.1 |
12SP33 | 12 | 33 | 198 | 130 | 178 | 12.0 |
12SP42 | 12 | 40 | 197 | 165 | 170 | 14.3 |
12SP55 | 12 | 55 | 229 | 138 | 211 | 18.2 |
12SP70 | 12 | 70 | 272 | 166 | 195 | 23.2 |
12SP70L | 12 | 70L | 325 | 166 | 174 | 23.3 |
12SP80 | 12 | 80 | 260 | 169 | 212 | 27.2 |
12SP90 | 12 | 90 | 305 | 168 | 212 | 31.4 |
12SP100 | 12 | 100 | 329 | 172 | 221 | 32.8 |
12SP120 | 12 | 120 | 407 | 173 | 225 | 38.0 |
12SP135 | 12 | 135 | 345 | 172 | 279 | 56.3 |
12SP150 | 12 | 150 | 485 | 170 | 241 | 46.0 |
12SP205 | 12 | 200 | 520 | 260 | 214 | 65.0 |
12SP235 | 12 | 230 | 520 | 260 | 214 | 74.4 |
1.kW和kVA的意思分别为千瓦和千伏安——“千”往往被作为前缀来形容更大的数字。
2.根据基本的物理定律,在直流(DC)电路中,“瓦特=伏特×安培”。而通常我们建筑物和设备中用的是交流电(AC)。因为对于电力公司来讲,交流电输送起来更为高效,损失较少。但当交流电到达设备的变压器之后,它往往会产生一种电抗(电容和电感在电路中对交流电引起的阻碍作用)特征。
3.从表观功率(volt-amperes)的角度来看,电抗会降低可用功率(瓦特)的数值。我们把这两个数据的比值称为功率因数(PF)。因此,交流电路的实际功率公式是“瓦特=伏特×安培×功率因数”。然而不幸的是,尽管说大多数用电设备的功率因数始终是稳定的,但通常只有1.0或是更少,而据我所知功率因数能够保持1.0的设备只有电灯泡。
多年来,大型UPS系统的设计都是基于0.8的功率因数,这意味着100kVA的UPS电源实际只能支持80kW的电力负载。如今,大多数UPS系统还是在继续按这种规格设计,即使现在大多数技术已经能使设备的功率因数达到0.95-0.98。
对于UPS电源来讲,无论是用千瓦来衡量还是用千伏安来衡量,都无法超越其额定的供电能力。然而,目前市场上也有一些UPS系统的PF值得到了进一步的修正,这使得我们可以将千瓦和千伏安等同看待。
UPS系统铭牌上的数据
在确定UPS单元的规格时大的问题就是如何确定其实际负载。许多数据硬件制造商在设备上提供的功率数据都与事实不符,有的甚至是*错误的。大型制造商通常会在自己的网站上设一个链接或配置评估装置。这使他们可以提供相当准确的信息。
要小心使用设备的铭牌。这是一个法定的额度标识,但通常来讲它所标注的额度比设备实际所能提供的功率要高得多。例如,假如一个UPS单元铭牌上标注着在90到240伏的电压标准下可以提供4到8安培的电流,那么它的实际功率可能只有500瓦。
首先,这些数据是可能会缩水的。电流越大,电压就越低。假如电压是120伏,电流是8安培,那么你能得到的功率是960伏安。在功率因数为0.95的情况下,它所能提供的功率就是912瓦。任何电源的效率都不会那么低,电源也从不会在满负荷的情况下运行。因此,这台UPS单元的功率恐怕永远都不会超过500瓦,但是如果你真的很保守,按1.1的功率因数来算,电源的输入功率规格也应该在550瓦特左右。
此外,不要被双接线(dual-corded)设备所迷惑。电源是要共同承担负载任务的,其中,要求每个单一电源都能支持满负荷运行。因此,一个拥有两台500瓦功率电源的UPS单元也应该被看成和一台500瓦电源一样。