| 注册| 产品展厅| 收藏该商铺

行业产品

当前位置:
山东恒泰正宇电源科技有限公司>>国产蓄电池>>松下蓄电池>> LC-P0612松下蓄电池LC-P0612 6V12AH/20HR

松下蓄电池LC-P0612 6V12AH/20HR

返回列表页
  • 松下蓄电池LC-P0612 6V12AH/20HR
  • 松下蓄电池LC-P0612 6V12AH/20HR
  • 松下蓄电池LC-P0612 6V12AH/20HR
  • 松下蓄电池LC-P0612 6V12AH/20HR
  • 松下蓄电池LC-P0612 6V12AH/20HR
收藏
举报
参考价 面议
具体成交价以合同协议为准
  • 型号 LC-P0612
  • 品牌 其他品牌
  • 厂商性质 经销商
  • 所在地 济南市
在线询价 收藏产品

更新时间:2020-05-26 11:05:37浏览次数:153

联系我们时请说明是化工仪器网上看到的信息,谢谢!

同类优质产品

更多产品

产品分类品牌分类

更多分类

产品简介

供货周期 现货 规格 12V系列
货号 4653211556 应用领域 医疗卫生,能源,电子/电池,道路/轨道/船舶,电气
主要用途 控制系统,电动玩具,应急灯,电动工具,报警系统,应急照明系统,备用电力电源,UP
控制系统,电动玩具,应急灯,电动工具,报警系统,应急照明系统,备用电力电源,UPS,电力系统,电信设备,消防和安全防卫系统,铁路系统以及发电站等。
松下蓄电池LC-P0612 6V12AH/20HR

详细介绍

松下蓄电池LC-P0612 6V12AH/20HR

松下蓄电池LC-P0612 6V12AH/20HR

 

 

蓄电池组漏液短路的危害
1、导致网络中断事故
数据中心的供电保障系统是保证网络设备供电不中断的核心系统,后备蓄电池组是网络的应急供电能源之所在。在直流240V供电系统中,蓄电池组是直接并联在整流器输出端的直流供电回路中,正是由于有后备蓄电池组的存在,市电停电或交流侧发生电气短路中断时,并不会直接导致通信网络的供电中断。同样,在交流UPS系统中,只要逆变器及后续电路正常工作,后备蓄电池组就能够发挥作用。然而,若蓄电池组发生电气短路,必然造成电源系统的输出电压瞬间跌落,引起负载设备掉电,导致网络中断故障,严重影响信息通信的畅通。
2、蓄电池组属于直流电源,其电路故障危害性比交流电源要大
一般情况下,发现电气短路起火时,首先要切断电源。对于交流电源而言,由于电能自上而下地来源于市电电网或柴油发电机组,当发生电气短路故障时,总会有一级保护器件产生动作,及时切断短路的电气电路。而当蓄电池组位于电源供电系统的末端,电能是自下而上提供的,只要越过了直流总配电屏的保护熔丝或蓄电池组的保护断路器,则不会再有其它的保护。发生短路故障时,往往无法有效地切断短路的电气电路。加上直流电流不像交流正弦波,它没有过零点时的瞬间电动势为零的过程,一旦发生电气短路极易引起蔓延。而发生短路后的阻抗仅取决于导线线阻和蓄电池组的内阻,短路电流近似为无穷大。因此,蓄电池组直流电气短路的危害程度远大于交流电气短路。
3、引发机房火灾
发生蓄电池组电气短路后,若不能及时发现和切断回路,则必然引起火灾。蓄电池组的电量越足,危害性也越大。
蓄电池电气短路的原因
常见的蓄电池电气短路甚至起火的原因一般有以下几点:
1、蓄电池本身质量有问题,桩头与极板连接有隐患;
2、蓄电池在运输或安装时,壳体出现裂纹而没有及时发现,安装后蓄电池内部酸液析出通过电池架电气短路;
3、蓄电池与电缆连接不牢,造成接触电阻过大,温度升高后接触面氧化严重,进而造成接触电阻继续变大,相继引起电气打火甚至拉弧,终引燃附近可燃物造成起火;
4、蓄电池组的连接电缆耐压值不够,造成电缆间的绝缘击穿,造成电缆短路起火;
5、蓄电池配置不合理,超出蓄电池放电极限;
6、蓄电池连接电缆在出入电池架处被电池架铁皮划破绝缘层发生短路;
7、蓄电池充电电流过大或电压过高造成蓄电池过充发热,正负极板变形弯曲从而起火;
8、蓄电池组的外部连接电缆或内部连接电缆因使用时间过久而绝缘老化,未及时检查更换处理,造成电缆间或电缆与电池架间产生短路。
从理论上分析,发生故障的根本原因是蓄电池组或单体通过导电体(例如电解液、电池架、导线等)或直接形成了正负极之间的回路,产生了漏电流或电气短路。
蓄电池组漏液隐患的防范措施的不足之处
常用防范蓄电池漏液电气短路措施和不足在上述各种蓄电池组电气短路的起因中,蓄电池漏液造成对电池架短路或绝缘度下降,造成正负极通过电池架间接短路,一直是发生几率较高、难以判断和发现,但后患却非常严重的疑难故障。
1、蓄电池底部增加托盘——托盘可燃;
2、电池架增加电木板垫片——不能避免电解液的漫延;
3、电池架对电气地绝缘——不易实施且不符合安全规范;
4、蓄电池室安装烟雾告警系统——不及时。
蓄电池组漏液检测的设置、排查和分析判断
1、蓄电池组漏液告警应定义为重大告警。当出现告警时,应及时派维护人员到现场排查;
2、对于240V直流电源系统,当出现绝缘监察告警时,如仅有总母线电压告警而没有分支路漏电流告警,在排除误告警的可能后,应考虑为蓄电池组绝缘度下降引起的告警;
3、多组蓄电池组(n=1~4)并联的情况
①当n=1时,蓄电池组漏液告警即为的一组蓄电池为疑似故障蓄电池组;
②当n>1时,可以逐组断开蓄电池组的近端保护开关,断开后系统告警随即消失时,该组蓄电池组即为疑似故障蓄电池组。

型  号

电压(V)

容量(Ah)
20小时率 20HR

外型尺寸(mm)

端子型号

单重
(约Kg)

(L)

(W)

(H)

(TH)

LC-P061R3

6

1.3

97

24

50

55

187

0.25

LC-P067R2

6

7.2

151

34

94

100

187& 250

1.30

LC-P0612

6

12

151

50

94

100

187& 250M

2.00

LC-P06200

6

200

407

173

210

250

M10 T

33.5

LC-P121R3

12

1.3

97

47.5

50

55

187

0.55

LC-P122R2

12

2.2

177

34

60

66

187

0.80

LC-P123R4

12

3.4

134

67

60

66

187

1.20

LC-P127R2

12

7.2

151

64.5

94

100

187& 250M

2.50

LC-PA1212

12

12

151

98

94

100

187& 250M

3.65

LC-PA1216

12

16

151

98

99

105

187& 250M

4.10

LC-PD1217

12

17

181

76

167

167

M5 L& M5 A

5.45

LC-P1220

12

20

181

76

167

167

M5 L& M5 A

5.80

LC-P1224

12

24

165

125

175

179.5/175

M5 L& M5 A

8.05

LC-P1228

12

28

165

125

175

179.5/175

M5 L& M5 A

9.40

LC-P1238

12

38

197

165

175

180/175

M6 L& M5 A

12.5

LC-P1242

12

42

197

165

175

180/175

M6 L& M5 A

13.5

LC-P1265

12

65

350

166

175

175

M6 L

19.0

LC-P1275

12

75

350

166

175

175

M6 L

21.5

LC-P12100

12

100

407

173

210

236

M8 L

29.0

LC-PB12100

12

100

407

173

210

236

M8 L

36.5

LC-P12120

12

120

407

173

210

236

M8 L

34.5

LC-P12150

12

150

532.4

183.3

209

235/214

M8嵌入式铜芯

45.0

LC-P12200

12

200

533

236.5

211

237/216

M8嵌入式铜芯

56.0

蓄电池组漏液检测可以有固定式和便携式两种形式
①蓄电池组正负极不接地的240V直流系统(即表1中第1种情况),可以直接通过完善系统绝缘监察功能的方式实现对蓄电池组漏液的在线检测;
②同样,蓄电池组正负极不接地且无中间抽头或中间抽头仅接中性点而不接地的交流UPS系统(即表1中第2、3种情况),可设置固定式的蓄电池组漏液检测装置实现对蓄电池组漏液的在线检测;
③电池组正负极不接地但有中间抽头且接地的交流UPS系统(即表1中第4种情况),可以利用便携式蓄电池组漏液检测仪定期对蓄电池组进行巡检。
安装固定式蓄电池组漏液测试装置或开始对蓄电池组进行巡检前,应测试并确认蓄电池组为对地悬浮工作状态。
即满足下列几点:
①蓄电池组正负极均不接地;
②蓄电池组的充放电回路对地绝缘或隔离;
③有中间抽头的蓄电池组,其中性点不接地或对地呈高阻状态;
④对于有中间抽头且中性点接地的UPS系统蓄电池组,可通过将电池架对地绝缘,或利用蓄电池组的近端保护开关将正负极与电源系统分离的方式,确保其对电池架的绝缘。

质保规则:

质量保证期限:视使用方法及使用客户,质保期为三年。
使用说明:铅酸蓄电池长时间放置三个月要为电池补充电量,放置半年让电池充放一次,达到一个循环;使用过 程中,切忌把电放干再充电,对电池影响很大,要 随用随充电,充满为止,但也不要过充、过放电。
郑重声明:本公司所售全部蓄电池保证是原厂原装*,假一罚十,签订合同,38AH以上出现非人为质量问题三年内免费更换同等型号的全新电池,请广大客户放心采购! 
随着电力电子技术的发展,电源(通信电源、UPS)的可靠性和安全性已经大大提高,但作为供电系统中后一道屏障的备用储能单元(铅酸蓄电池),由于其特性(化学反应)可靠性一直没有多大提升,因此科学有效的维护是保障蓄电池系统稳定运行的关键。
目前对于蓄电池的维护工作普遍存在维护工作不到位;流程复杂、针对性差;维护手段匮乏等问题。蓄电池系统已经成为电源系统中不可靠的部分。在重大的电源事故中,由于电源自身故障引发的事故占10%、开关切换故障引发事故占20%,而其余70%的事故都是与蓄电池故障相关的(见图1)。有效地监控和科学地维护对于提高蓄电池组稳定性至关重要。发现和解决蓄电池系统中的隐患、提高蓄电池组的安全性是目前蓄电池维护工作的重点。也是提高数据中心供电系统可用性的有效手段之一。
1阀控铅酸蓄电池维护测试方法
(1)传统的蓄电池维护方法
电工学会铅酸蓄电池检测和维护规范IEEE1188-1996中对于蓄电池维护规定,对于铅酸蓄电池的维护应做到以下4点:
①实时、准确的单体蓄电池电压、电池组电流和环境温度的监控;
②每月1~2次的单体蓄电池内阻测试并跟踪蓄电池内阻变化趋势;
③每年2次的核对性放电;
④对现场使用时间超过2年的蓄电池,应做到每3个月进行一次核对性放电。
该标准在提高了蓄电池系统的稳定可靠性的同时,也大大提高了对于蓄电池日常维护的要求,很难在我们的日常维护中得到充分的执行。结合我们自身的实际情况,大部分运行维护工作采用了相对简化的维护流程:
①现网电池浮充电压、浮充电流的日常巡检(每月1次);
②枢纽机房蓄电池组核对性放电试验,放出容量的30%~40%(每年1次);
③基站电池全容量放电试验(每年1次);
④发电机启动电池(半年1次)。
简化了的维护流程在降低了蓄电池维护工作量,也提高了蓄电池组的安全隐患。即便是按照简化后的流程执行,蓄电池的日常巡检和定期放电仍需要大量的人力、物力才能完成。一年一次的全容量放电的测试密度仍然不能做到及时发现电池性能的劣化状况;进一步加大放电试验密度将使蓄电池维护所牵扯的人力、物力投入过大,缺乏可操作性;对于现网的数量庞大的蓄电池,缺乏系统性的运行性能统计、趋势分析、预警和质量管理的支撑平台,维护管理手段落后。维护工作缺乏主动性、预防性[3]。

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~
二维码 意见反馈
在线留言