供货周期 | 现货 | 规格 | 12V61.7AH |
---|---|---|---|
应用领域 | 医疗卫生,石油,能源,电子/电池,道路/轨道/船舶 | 主要用途 | UPS电源/直流屏 |
公司致力为UPS电源 直流屏 通信 医疗等行业领域提供专业全方面的解决方案与服务。我们有专业的销售,安装,售后团队,全天24小时为您服务。
![]() |
参考价 | 面议 |
更新时间:2020-04-03 12:34:17浏览次数:230
联系我们时请说明是化工仪器网上看到的信息,谢谢!
美国海志GEL蓄电池HZY12-70J 12V61.7AH批发
美国海志GEL蓄电池HZY12-70J 12V61.7AH批发
美国海志HAZE 蓄电池拥有当今世界的胶体 (Gel) 和 AGM 电池生产技术,海志电池规格齐全(液体和胶体,容量从 0.5AH---3850AH )、使用寿命长( 2V 系列 18 年、 6V/12V 系列 12 年)、质保时间长( 2V 系列 5 年、 12V 系列 3 年)、价位适中等特点。目前在中国制造的 HAZE 产品,主要原材料均来源于德国。
前引式AGM电池结构正负极板栅是由铅、钙、锡合金浇铸而成。电池活性物质是由高纯度(99.9999%)的铅制成的,这些铅已将杂质含量控制到小,而这些杂质是导*板被腐蚀和产生自放电的主要原因。
电池隔板是由超细玻璃纤维制成,具有*的耐酸性能,能充当海棉一样的吸酸能力,使电解液在电池内不具有流动性,并在放电过程中需要酸时,保持足够酸的供应量。“S”形包板方法的应用,有助于减少由于电池底部枝晶或铅粒造成的短路问题。
隔板的用途在于保持正、负极板之间一定的距离,并*消除了在活性物质同电解液发生化学反应时而产生短路的可能。另外,隔板具有开口结构的特点,这种结构使其在加酸时对电解液的流动具有很小的阻力。
电池内部结构:
胶体电池正负极板栅是由铅、钙、锡合金浇铸而成。电池活性物质是由高纯度(99.9999%)的铅制成的,这些铅已将杂质含量控制到小,而这些杂质正是导*板被腐蚀和产生自放电的主要原因。
胶体电解液的加入:
胶体是通过真空加胶设备加入电池中,确保电解液*进入到极板与隔板中显得至关重要,因而在加完胶后,须不断做真空循环。电池设计与制造使电池在寿命期内无须加任何电解液。
隔板采用了德国生产技术,源自于世界胶体电池隔板生产企业的。隔板的主要材料是高分子聚合物,具有良好的耐高温性能及机械强度,因而对震动及机械碰撞具有很强的抵制力。
非常准确的酸量控制,有效地保护了正极板并极大地提高了电池寿命。
采用厚极板,减小了板栅的腐蚀,并极大地提高循环寿命。
内阻低,充电接受能力强。
与AGM电池相比,在正常的充电条件下,电池内部水份损耗非常小。
德国*技术造就的高分子聚合物隔板,提高了电池的性能及寿命。
隔板超高机械强度隔板的应用,避免了短路的产生的可能。
在没有*充足电的情况下,可以对电池进行放电,且对电池不会有任何损坏。
请不要在粉尘多的地方使用蓄电池,粉尘多的地方,有可能会成为短路的原因。如果在粉尘多的地方使用时,请定期进行检查。
(6) 使用多个蓄电池时,首先,正确地进行相互间的连接,然后再连接蓄电池和充电器或负荷。在这样的情况下,蓄电池的⊕极连接充电器或负荷的⊕端子,再把蓄电池的⊙极与充电器或负荷的⊙端子分别地连接好。如果蓄电池、充电器、负荷等连接时极性发生错误,可能引起爆炸、火灾以及蓄电池、机器的损坏,有的时候有可能造成人身伤害。
(7) 注意请不要让蓄电池落到脚上,如蓄电池落到脚上,可能会引起重大伤害。
蓄电池变形不是突发的,往往是有一个过程的。蓄电池在充电到容量的 80% 左右进入高电压充电区,这时,在正极板上先析出氧气,氧气通过隔板中的孔,到达负极,在负极板上进行氧复活反应: 2Pb+O2=2PbO+ 热量 PbO+H2SO4=PbSO4+H2O+ 热量 反应时产生热量,当充电容量达到 90% 时,氧气发生速度增大,负极开始产生氢气。大量气体的增加使蓄电池内压超过开阀压,安全阀打开,气体逸出,终表现为失水。 2H2O=2H2↑+O2↑ 随着蓄电池循环次数的增加,水分逐渐减少,结果蓄电池出现如下情况:
( 1 )氧气 “ 通道 ” 变得畅通,正极产生的氧气很容易通过 “ 通道 ” 到达负极。( 2 )热容减小,在蓄电池中热容大的是水,水损失后,蓄电池热容大大减小,产生的热量使蓄电池温度升高很快。
目前制约机架式模块化UPS发展的难点主要集中在功率密度的提高和并联数量的增加及降低价格三个方面。
机架式的模块化UPS从传统立式(塔式)结构过渡而来,相对传统立式(塔式)结构拥有宽阔的散热通道,大尺寸大功率的散热风扇的庞大体积而言,模块化UPS由于要便于单体更换操作,模块的体积重量都较小。
受到体积的限制,在UPS模块功率加大的情况下,散热就成了大问题。为了能达到安全工作的目的,模块化UPS不但采用原有的被动式散热、主动式散热、轴流式散热和风道导流式散热技术,还引入了热管式散热。
为确保电源的高可用性、可扩展性,模块应该不限制数量地进行并联使用。
在多台UPS并联时,其中重要的指标就是电流均分,也就是说如果N台UPS并联,必须保证每台UPS的输出电流是总输出电流的1/N,至少其相互之间的大不平衡度要在要求范围内(一般是小于2%)。
在实际应用中,所有UPS的输出阻抗不可能一样,加之各逆变器的输出电压和市电电压锁相都具有正负误差,则各个UPS的电压既有相位差又有幅值差,这些都限制了并联台数的增加,进而限制了整机功率的提高。
在同一功率水平下,模块化UPS比传统的UPS价格贵的多。
把机架式的模块化UPS价格降到用户可接受的范围,是摆脱机架式的模块化UPS系统目前的*不高、用户群只能是那些有一定经济实力且对业务系统的可靠性、可用性要求比较高的客户,全面占领市场的惟一办法。