供货周期 | 一个月以上 | 规格 | 见详情 |
---|---|---|---|
货号 | 13861540 | 应用领域 | 医疗卫生,能源,电子/电池,道路/轨道/船舶,电气 |
主要用途 | 控制系统,电动玩具,应急灯,电动工具,报警系统,应急照明系统,备用电力电源,UP |
易事特EAST蓄电池NP38-12 12V38AH价格
![]() |
参考价 | 面议 |
更新时间:2019-09-12 22:42:16浏览次数:188
联系我们时请说明是化工仪器网上看到的信息,谢谢!
易事特EAST蓄电池NP38-12 12V38AH价格
易事特EAST蓄电池NP38-12 12V38AH价格
通讯基站用易事特蓄电池运用注意事项
一、基站频频停电、停电时刻长、停电时刻无规则,使蓄电池频频充放电,是形成蓄电池容量下降过快和运用寿数缩短的一个主要原因。
依据对基站报废蓄电池解剖情况来看,导致蓄电池寿数停止的原因在于蓄电池负极板的硫酸盐化,这是蓄电池前期容量衰竭(PCL)的一种典型现象。形成蓄电池负极板发作硫酸盐化的原因或许有以下两个方面:
1)基站停电频次过高,一天内停电数次,乃至接连停电数天,使基站蓄电池在放电后没有足够电的情况下又放电,蓄电池呈现欠充。如接连屡次发作欠充,将形成蓄电池容量累积性亏本,则该基站的蓄电池容量将在较短时刻内下降,其运用寿数将较快停止。蓄电池容量下降的速度与该基站蓄电池接连欠充的次数成必定的正比联系。形成蓄电池容量下降的内涵原因在于,电池放电后在未足够电的情况下又放电,正、负极在放电后生成的硫酸铅未能别离*康复成二氧化铅和金属铅的情况下,正、负极板又放电,使蓄电池发作欠充,接连屡次欠充,使负极板逐渐硫酸盐化,发作不可逆转的结晶硫酸铅,特别是在蓄电池处于深度过放电的情况下,蓄电池负极板的硫酸盐化将更严峻,硫酸盐化的速度将更快,形成负极板外表被屏蔽,其功用逐渐下降直至失效,导致蓄电池运用寿数下降直至停止。从现有基站蓄电池实践运用情况剖析,蓄电池发作累计欠充或许性是存在的。别的,蓄电池虽存在屡次欠充,但二次欠充或屡次欠充不是有规则接连发作的,电池发作累计欠充或许性及概率有多大,有待进一步断定。
2)别的一个观念,形成基站蓄电池容量下降、运用寿数缩短的主要原因是由蓄电池负极板硫酸化引起的,蓄电池累计欠充将导致负极板硫酸化外,蓄电池充放电循环次数添加或必定时刻内充放电循环过度频频是否也将导致负极板硫酸化,或许是导致负极板硫酸化的一个重要要素。
当然形成蓄电池负极板硫酸化原因除上述原因外还有多种要素,如电解液或玻璃纤维棉杂质超支,使电池自放电速率加速。浮充或均衡电压过低,使部分硫酸铅晶体不能被溶解。常常放电过量或常常小电流深放电,使蓄电池初期充电功率下降。电池作业环境温度过高,杂质离子更为活泼,加速电池自放电。
依据现在电池生产厂家的规划、生产工艺及技术水平,形成基站蓄电池负极板硫酸化主要原因不在于产品质量,因在蓄电池正常运用情况下,蓄电池负极板硫酸化的时刻较长,然后形成蓄电池容量难以康复。别的从运用情况剖析,不同生产厂家,不论进口或国产电池,都存在该问题。所以形成基站蓄电池负极板硫酸化的主要原因在基站频频停电,常常过放电和小电流的深度过放电,形成蓄电池欠充,欠充接连屡次的发作,形成蓄电池累计欠充,基站充放电循环次数过度频频,然后形成负极板不可逆转的硫酸化。负极板的硫酸化是现在影响基站蓄电池容量下降,运用寿数缩短的主要原因所在。 说明:在UPS不间断电源设计配置的计算过程中,通常采用字母“N”来指代UPS不间断电源设计配置。例如,并联冗余系统也称作N+1设计,而双系统设计可以用2N来表示。“N”可以简单地定义为关键负载的“need(需求)”。换而言之,即满足所保护设备供电量的电源容量。我们可以用RAID(独立磁盘冗余阵列)系统等IT设备来解释“N”的用途。例如,如果存储容量需要4个磁盘,且RAID系统正好包含4个磁盘,则称这是一个“N”设计。反之,如果RAID系统有5个磁盘,而存储容量只需要4个磁盘,则为“N+1”设计。
一直以来,在规划关键负载电源时,必须充分考虑以后的发展,以使UPS系统可以为负载提供10或15年的支持。事实证明,按照这一原则进行规划是很困难的。20世纪90年代,为便于提供讨论框架并比较各种设施,曾提出了“瓦特/单位面积”的概念。但由于人们对“单位面积”的含义无法达成共识,这种电源度量指标造成了很多误解。近来,伴随着技术精简的大趋势,人们逐渐采用“瓦特/机架”的概念来表示系统容量。事实证明,由于单位空间内的机架数量很容易统计,因此这种度量方式的准确性更高。无论如何选择负载“N”,有一点很重要,那就是应当从一开始便选择好配置方案,使设计过程沿着正确的方向进行。
简而言之,N系统指由单个UPS不间断电源模块或容量与关键负载规划容量相等的一组并联UPS不间断电源模块构成的系统。迄今为止,这种类型的系统是UPS不间断电源行业中使用为广泛的配置。办公桌下的小型UPS不间断电源即属于N配置。同样,对于规划设计容量为400kW,面积为500平方米(5000平方英尺的计算机房,如果采用单个400kW的UPS电源或在公共总线上采用两个并联的200kWUPS,那么也属于N配置。因此,可以将N配置视作为关键负载供电的低要求。
EAST蓄电池/易事特蓄电池规格参数一览
| 额定电压(V) | 额定容量(AH) | 尺寸(mm) | 重量 | 端子 | 螺栓 | ||||
长(mm) | 宽(mm) | 高(mm) | 总高(mm) | 类型 | 位置 | |||||
NP7-12 | 12 | 7 | 151 | 65 | 95 | 100 | 2.15 | D/E | F | — |
NP7-12(E) | 12 | 7 | 151 | 65 | 95 | 100 | 2.05 | D/E | F | — |
NP7.5-12 | 12 | 7.5 | 151 | 65 | 95 | 100 | 2.20 | D/E | F | — |
NP8-12 | 12 | 8 | 151 | 65 | 95 | 100 | 2.35 | D/E | F | — |
NP9-12 | 12 | 9 | 151 | 65 | 95 | 100 | 2.45 | D/E | F | — |
NP10-12 | 12 | 10 | 151 | 65 | 111 | 117 | 3.10 | D/E | F | — |
NP12-12 | 12 | 12 | 151 | 98 | 95 | 101 | 3.60 | D/E | F | — |
NP14-12 | 12 | 14 | 151 | 98 | 95 | 101 | 4.05 | D/E | F | — |
NP17-12 | 12 | 17 | 181 | 77 | 167 | 167 | 5.30 | G | D | M5 |
NP24-12 | 12 | 24 | 167 | 175 | 125 | 125 | 8.10 | F | D | M5 |
NP24-12(E) | 12 | 24 | 167 | 175 | 125 | 125 | 7.60 | F | D | M5 |
NP33-12 | 12 | 33 | 196 | 131 | 155 | 168 | 11.0 | F | C | M6 |
NP38-12 | 12 | 38 | 197.5 | 165.5 | 170 | 170 | 12.8 | F | D | M6 |
NP55-12 | 12 | 55 | 239 | 132 | 205 | 210 | 17.3 | F | C | M6 |
NP65-12 | 12 | 65 | 350 | 167 | 179 | 179 | 20.4 | F | C | M6 |
NP80-12 | 12 | 80 | 350 | 167 | 179 | 179 | 24.0 | F | C | M6 |
NP100-12 | 12 | 100 | 330 | 172 | 215 | 222 | 32.0 | F | C | M6 |
NP100-12(L) | 12 | 100 | 330 | 172 | 215 | 222 | 29.0 | F | C | M8 |
NP100-12(E) | 12 | 100 | 330 | 172 | 215 | 222 | 28.0 | F |
| M8 |
NP120-12 | 12 | 120 | 410 | 176 | 227 | 227 | 33.5 | F | C | M8 |
NP150-12 | 12 | 150 | 482 | 170 | 240 | 240 | 44.5 | F | C | M8 |
NP200-12 | 12 | 200 | 522 | 238 | 218 | 223 | 65.0 | F | E | M8 |
NP200-12(E) | 12 | 200 | 522 | 238 | 218 | 223 | 59.1 | F | E | M8 |
NP230-12 | 12 | 230 | 520 | 269 | 203 | 208 | 72.6 | F | E | M8 |
二、基站停电后,蓄电池放电至停止电压,未及时进行补充电,也将导致电池容量下降和运用寿数缩短。
因为部分基站地处市郊或偏远山村等地,市电供给状况较差,市电停电的次数多且停电时刻较长,往往一旦市电停电后,蓄电池放电至停止电压,市电还未康复,这样一方面或许形成蓄电池过放电,另一方面电池放电后又不能得到及时补充电,依据相关材料表明,电池放电后如不能及时进行补充电,将使蓄电池容量逐渐下降,通过几回循环后,蓄电池运用寿数将显着缩短。
三、开关电源设置参数不合理,基站蓄电池欠压维护设置电压过低,复位电压设置过低,使蓄电池呈现过放电乃至深度过放电现象,从另一方面加重蓄电池负极板硫酸化,是使蓄电池容量下降,运用寿数缩短的另一个主要原因。
现在基站组合开关电源均设置低电压隔离维护功用或二次下电功用。当蓄电池放电至某一设定电压值时,开关电源体系将主动堵截对部分重负载供电或悉数负载的供电,以维护蓄电池不过放电,保证蓄电池运用寿数。如电池低欠压维护值设置过低,蓄电池将呈现过放电,屡次的过放电和过放电后未能及时补充电或充电缺乏都将严峻影响电池运用寿数;别的如开关电源复位电压设置过低,将使电池在放电过程中呈现重复屡次放电;详细电池低欠压维护值设置应依据负载电流巨细而设置,而现在基站蓄电池低欠压维护值一般设置在单体电池电压每只1.8V左右,有的乃至设定为每只1.75V。依据阀控式密封电池的放电功能结合基站实践负载电流(现在基站实践负载电流绝大部分均小于0.1C10A),基站电池低欠压维护值应设置在电池单体电压每只1.8V左右。因而,现在基站蓄电池欠压维护设置参阅电压过低,如基站长时刻停电,会使电池呈现过放电,乃至是小电流深度过放电,而过放电的电池要*足够电,康复容量所需充电时刻较长,深度过放电的电池在基站现有仅有恒压充电条件下,一般是很难*康复其额外容量的。所以开关电源参数设置不合理,从另一方面加重电池负极板硫酸化,然后形成电池容量下降,运用寿数缩短。
四、基站运用环境较恶劣。基站停电后,因为无空调,使基站环境温度逐渐上升。或许因为空调毛病,使基站室内温度偏高,然后下降了蓄电池运用寿数。
室内基站均装备空调,装备的空调为一般柜机或分体式空调,长时刻不间断运用使部分基站空调呈现毛病而停机,空调损坏后有时得不到及时修理,而室内基站为关闭机房,空调停机后使基站室内温度大幅上升,彩钢板机房其室内温度乃至可到达70℃以上。另一方面,即使空调正常,而基站因为停电后,无交流电源,空调也无法制冷,特别在夏天,将使基站室内温度大幅上升,然后影响蓄电池正常作业。室内温度过高一方面使阀控式密封电池内部失水量加重,电解液饱和度下降(玻璃纤维棉隔膜内电解液削减)使电池容量下降和电池运用寿数缩短。另一方面因为室内温度过高,将使蓄电池热失控效应加重,然后形成蓄电池正极板腐蚀速率加重、极板变形胀大、电池外壳鼓胀乃至开裂等,终导致电池容量快速下降,电池寿数缩短,依据相关材料表明,当环境温度超越25℃时,每升高10℃,电池运用寿数将缩短1/2。与小型UPS电源不同,超出单相容量(大约为20kW)的系统都设置有内部静态旁路开关,以便在UPS电源模块出现内部问题时,将负载安全地转换到市电。UPS到静态旁路的转换点都经过制造商的仔细选取,以便为关键负载提供妥善的保护,同时也保护UPS电源模块本身不会受到损害。下面举例说明了这些保护措施中的一种措施:在三相UPS不间断电源应用中,模块通常都具有额定过载能力指标。该指标的一种表述形式为“模块将承载125%的额定负载达10分钟”。因此,一旦负载达到额定值的125%,模块将启动一个计时程序,其内部时钟将开始倒数10分钟。10分钟后,如果负载仍未恢复到正常水平,则模块会将负载安全地转换到静态旁路。启用旁路的情况还有很多种,UPS电源模块的规格说明中会对此进行详细阐述。
扩充N配置的一种方式是为系统提供“维护”或“外部”旁路。若采用外部旁路,那么在需要进行维护时,可以将整个UPS不间断电源系统(模块和静态旁路)安全的关闭。维护旁路与UPS电源共用一个配电盘,并且与UPS输出端直接相连。当然,正常情况下这条电路处于断开状,仅当UPS电源模块转换到静态旁路时才合上。在设计过程中,必须采取某些措施以防止当UPS电源未转换到静态旁路时,维护旁路电路接通,如果安装正确,维护旁路可确保UPS电源模块安全运行而无需担心负载停机,因而是系统中一个极为重要的组件。
大多数“N”系统配置,尤其是低于100kW的配置,都用于对整个电力系统配置无特殊要求的建筑环境中。建筑物的电力系统一般都采用“N”配置,因此,“N”UPS配置刚好可满足这种情况。