供货周期 | 现货 | 规格 | 12V33AH |
---|---|---|---|
货号 | 745767572336 | 应用领域 | 医疗卫生,石油,能源,电子/电池,道路/轨道/船舶 |
主要用途 | UPS电源/直流屏 |
公司致力为UPS电源 直流屏 通信 医疗等行业领域提供专业全方面的解决方案与服务。我们有专业的销售,安装,售后团队,全天24小时您务。
![]() |
参考价 | 面议 |
更新时间:2020-11-02 15:03:30浏览次数:146
联系我们时请说明是化工仪器网上看到的信息,谢谢!
Shimastu铅酸蓄电池NP33-12 12V33AH直流屏
Shimastu铅酸蓄电池NP33-12 12V33AH直流屏
Shimastu电子科技有限公司,一个的密封铅酸(SLA)电池的专业厂家,引进日本AGM公司的技术基础。Shimastu一直在研究、开发、生产和营销SLA电池自2001年以来。采用*的技术过程从*和现代化的生产设备和检测设备,Shimastu一直为客户提供SLA的NP系列电池使用寿命长,质量可靠,性能稳定。
储能多样化发展《指导意见》“开发储电、储热、储冷、清洁燃料存储等多类型、大容量、低成本、高效率、长寿命储能产品及系统”。
在能源互联网背景下,储能的意义更广,储电、储热、储冷、清洁燃料存储(例如储氢)都涵盖在了储能的范畴里,通过不同形式的能源存储,将电力、热力、交通、油气等网络互连,是能源综合利用,多能互补利用的关键,储能的应用范围将扩大。
储能电站,集中式新能源基地配置《指导意见》“推动在集中式新能源发电基地配置适当规模的储能电站,实现储能系统与新能源、电网的协调优化运行”。
目前,与集中式风光电站相结合的储能示范项目,基本都建设在某一个电站,《指导意见》提出了一条*不同的思路,这也代表着经过几年示范运行,决策部门也在思考储能的配置。储能配置在发电基地,更能统筹协调多个电站与电网协调优化运行,避免资源配置上的浪费,在储能成本较高的现状下,更加经济可行。另外,建设在单一风光电站的储能项目,电网对其调度管理有限,多将其视为电厂的一项设备与电厂一起管理,不利于明晰储能的功能、计算储能的价值。在发电基地配置,与单个风光电站相对独立,储能作为一项电力资源为电网提供电力服务存在了可能性,也为探讨储能的价值实现、经济收益计算、商业模式建立创造了条件。有专家表示,如果在新能源发电基地配置储能电站,5-10%的容量基本能满足风光调节的需求。根据《可再生能源发展“十二五”规划》,我国风电装机到2020年,将达200GW,按此简单计算,集中式风电站将给储能带来的潜在市场空间为10-20GW,储能发展潜力巨大。
Model | Nominal Voltage | Nominal Capacity | Dimensions | Ht.Over Terminal | Weight Approx(kg) | Terminals | Accessories |
|
| ||||||||||||||||||||
L | W | H |
|
| |||||||||||||||||||||||||
in | mm | in | mm | in | mm | in | mm | kg | lb |
| |||||||||||||||||||
NPH8-12 | 12 | 8.5 | 5.94 | 151 | 2.56 | 65 | 3.74 | 95 | 4.25 | 108 | 2.75 | 6.06 | Q01 |
|
| ||||||||||||||
NPH9-12 | 12 | 10 | 7.17 | 182 | 2.56 | 65 | 3.74 | 95 | 4.25 | 108 | 3.15 | 6.94 | Q01 |
|
| ||||||||||||||
NPH12-12 | 12 | 14 | 5.94 | 151 | 3.86 | 98 | 3.74 | 95 | 3.94 | 100 | 3.95 | 8.71 | T01(T02) |
|
| ||||||||||||||
NPH17-12 | 12 | 20 | 7.13 | 181 | 2.99 | 76 | 6.61 | 168 | 6.61 | 168 | 6.1 | 13.44 | Q02(B02) |
|
| ||||||||||||||
NPH18-12 | 12 | 18 | 7.13 | 181 | 2.99 | 76 | 6.61 | 168 | 6.61 | 181 | 5.6 | 12.3 | Q07 |
|
| ||||||||||||||
NPH24-12 | 12 | 27 | 6.89 | 175 | 6.5 | 165 | 4.96 | 126 | 4.96 | 126 | 8.9 | 19.62 | Q04(B03) |
|
| ||||||||||||||
NPH33-12 | 12 | 35 | 7.72 | 196 | 5.16 | 131 | 6.42 | 163 | 7.05 | 179 | 11.2 | 24.68 | Q19(B04) |
|
| ||||||||||||||
NPH40-12 | 12 | 42 | 7.8 | 198 | 6.54 | 166 | 6.77 | 172 | 6.77 | 172 | 14.2 | 31.31 | Q07(B04) |
|
| ||||||||||||||
NPH55-12 | 12 | 60 | 9.02 | 229 | 5.43 | 138 | 8.19 | 208 | 8.94 | 0 | 18 | 39.67 | Q08(B04) |
|
| ||||||||||||||
NPH65-12 | 12 | 70 | 13.78 | 350 | 6.16 | 168 | 7.01 | 178 | 7.01 | 178 | 22.5 | 49.59 | Q10(B04) |
|
| ||||||||||||||
NPH70-12 | 12 | 70 | 10.2 | 259 | 6.65 | 169 | 8.19 | 208 | 8.94 | 227 | 22.5 | 49.5 | B04 |
|
| ||||||||||||||
|
| ||||||||||||||||||||||||||||
NPH75-12 | 12 | 85 | 10.2 | 259 | 6.65 | 169 | 8.19 | 208 | 8.94 | 0 | 25.2 | 55.54 | Q11(B04) |
|
| ||||||||||||||
NPH90-12 | 12 | 100 | 12.09 | 307 | 6.65 | 169 | 8.19 | 208 | 8.94 | 227 | 28.2 | 62.15 | Q13 |
|
| ||||||||||||||
NPH100-12 | 12 | 110 | 12.91 | 328 | 6.77 | 172 | 8.43 | 214 | 9.32 | 233 | 31.5 | 69.43 | Q14(B04) |
|
| ||||||||||||||
NPH120-12 | 12 | 120 | 16.02 | 407 | 6.85 | 174 | 8.23 | 209 | 9.37 | 238 | 36.9 | 81.33 | B04 |
|
| ||||||||||||||
NPH134-12 | 12 | 155 | 13.43 | 341 | 6.81 | 173 | 11.14 | 283 | 11.34 | 288 | 45 | 99.18 | B01 |
|
| ||||||||||||||
NPH150-12 | 12 | 166 | 13.43 | 341 | 6.81 | 173 | 11.14 | 283 | 11.34 | 288 | 46.5 | 102.49 | Q16(B05) |
|
| ||||||||||||||
NPH180-12 | 12 | 180 | 20.9 | 530 | 8.23 | 209 | 8.43 | 214 | 9.6 | 244 | 51 | 112.3 | Q17 |
|
|
What are deep cycle batteries?
Deep-cycle batteries typically feature thick plates with a high-density active material. The thick battery plates allow for reserve energy to be stored deep within the battery plate and released during slow discharge such as trolling or electronic instrument use. The high-density active material remains within the batteries' plate/grid structure longer, resisting the normal degradation found in cycling conditions. They are typically used where the battery is discharged to great extent and then recharged such as a battery powered trolling motor on a fishing boat.
报告援引国外的数据称,与国外主要发达国家相比,中国在发电环节碳排放总量远远高于日本、德国、法国,单位电量发电环节碳排放超过世界主要发达国家。2008年发电环节,中国每万千瓦时碳排放为2.01吨,是美国的1.22倍、德国的1.5倍、日本的1.7倍、法国的12.6倍。而2001年以来,中国电网输电线路线损率呈现不断下降趋势。数据显示,2009年电网输电线路损失率比上年减少0.24个百分点,降为6.55%。根据测算,由于中国每年发电总量不断增加,电力输送环节碳排放总量亦呈现上升趋势,与世界主要发达国家相比,2007年在电力输送环节,中国碳排放要高于法国、德国、日本,略低于美国。
但是。单位电量输电环节碳排放超过世界主要发达国家,2007年电力输送环节,中国每万千瓦时碳排放为0.049吨,是美国的1.3倍、德国的2.05倍、日本的2.26倍、法国的11倍。
尽管移动和云计算平台相对较新,然而专业IT人士已经留意数据中心几十年了。而为什么备份问题一直没有得到解决?至少还有两个主要原因说明数据中心的数据保护问题仍在挑战IT:一个是恢复需求和保护机制的变化,还有一个是巨量的生产和保护所需要的存储空间。
现代化备份和容灾保护三部曲系列中的*部分,呈现的是数据中心备份和容灾保护是如何进化的。
保护和恢复的需求正在发生改变
当我们的生产系统平台发生变化的时候,对应的保护方式必须做相应的改变。作为一个典型的例子,随着虚拟化的大规模普及,许多传统的备份服务器数据的方法都已经被取代或得到补充。而当每个生产服务器都需要有自己的代理程序时,的情况是利用虚拟主机位中心的数据保护机制,提供特定的虚拟化API接口来实现整个(虚拟)机器备份,同时还提供精细还原的能力。此外,当生产数据持续的从传统数据中心服务器迁移到移动设备或者云平台上时,保护和恢复的需求也得进行相应的演变。
由于数据依赖性的不断提升,对于任何形式的宕机或数据不*,容忍度也变得越来越低。但是为了获得更广泛的数据恢复的敏捷性,除了传统的备份方式外,必须使用更广泛的数据保护机制,其中包括快照和复制。