产品展厅收藏该商铺

您好 登录 注册

当前位置:
山东明基环保设备有限公司>>厌氧反应器>>UASB厌氧反应器>>唐山古冶UASB厌氧反应器

唐山古冶UASB厌氧反应器

返回列表页
  • 唐山古冶UASB厌氧反应器

  • 唐山古冶UASB厌氧反应器

  • 唐山古冶UASB厌氧反应器

  • 唐山古冶UASB厌氧反应器

  • 唐山古冶UASB厌氧反应器

收藏
举报
参考价 10000
订货量 1
具体成交价以合同协议为准
  • 型号
  • 品牌 明基环保
  • 厂商性质 生产商
  • 所在地 潍坊市

在线询价 收藏产品 加入对比 查看联系电话

更新时间:2023-02-27 16:20:54浏览次数:639

联系我们时请说明是化工仪器网上看到的信息,谢谢!

产品简介

产地类别 国产 应用领域 环保,食品,综合
唐山古冶UASB厌氧反应器
UASB内污泥浓度与设备的机负荷率关。是处理制糖废水试验时,UASB内污泥分布与负荷的关系。从图中可看出污泥层污泥浓度比悬浮层污泥浓,悬浮层的上下部分污泥浓度差较小,说明接近完混合型流态,反应区内污泥的颁,当机负荷很高时污泥层和悬浮层分界不明显

详细介绍

唐山古冶UASB厌氧反应器
(1)氧化还原电位:利用测定氧化还原电位的方法判定厌氧反应器内的多个氧化还原组分系统是否平衡状态,虽然这种方法可靠性较差,但由于氧化还原电位测定简单,和其他监测指结合起来,一定的指导意义。
(2)丙酸盐和乙酸盐浓度比:如果厌氧反应器机负荷过正常范围,在其他运行参数发生变化之前,丙酸盐和乙酸盐浓度之比会立即升高。因此可以将丙酸盐和乙酸盐浓度之比作为厌氧反应器负荷引起运行异常的灵敏而可靠的警示指。
(3)挥发性酸VFA:挥发性酸的异常升高是厌氧反应器中产甲烷菌代谢受到抑制的较效指。
(4):是降解芳香组氨基酸和木质素等大分子机物产生的中间产物,当处理含这类污染物的污水时,厌氧处理出水中含量是比挥发性酸更为敏感的反映厌氧反应器运行状态的指。
(5)甲硫醇:甲硫醇气味,即使含很低,人们也能凭嗅觉感觉出来。甲硫醇含量突然增加(气味突然出现或加大)往往表明进水中氯代烃类毒物质含量突然增加。
(6)一氧化碳CO: CO的产生与甲烷的产生密切相关,CO难溶于水,可以实现在线监测。气相中CO的含量和液相中乙酸盐的浓度良好的相关性,CO的含量变化与重金属和由机毒性所引起的抑制也关系。

营养与环境条件
厌氧要求机物浓度较高,一般大于1000mg/L以上。所以厌氧适于处理高浓度机废水和污泥处理。和好氧生物处理一样,厌氧处理也要求供给面的营养,但好氧细菌增殖快,机物50~60%用于细菌增殖,故对N、P要求高;而厌氧增殖慢,BOD5~10%用于合成菌体,对N、P要求低。
COD∶N∶P=200∶5∶1或C∶N=12~16
(好氧COD∶N∶P=100∶5∶1)
厌氧过程对环境条件要求比较严格:
Ⅰ、氧化还原电位(φE)与温度
氧的溶入和氧化态、氧化剂的存在:Fe3+、Cr2O72-、NO3-、SO42-、PO43-、H+会使体系中电位升高,对厌氧消化不利。
高温消化--500~600mv,50~55℃
中温消化--300~380mv,30~38℃
产酸菌对氧还-还电位要求不甚严格+100~-100mv
产甲烷菌对氧还-还电位要求严格<-350mv
Ⅱ、pH及碱度
pH主要取决于三个生化阶段的平衡状态,原液本身的pH和发酵系统中产生的CO2分压(20.3~40.5kpa),正常发酵pH=7.2~7.4,机负荷太大,水解和酸化过程的生化速率大大过产气速率。将导致水解产物机酸的积累使pH下降,抑制甲烷菌的机能,使气化速率锐减,所以原液pH=6~8,发酵过程机酸浓度不过3000mg/L为佳(以乙酸计)。
HCO3-及NH3是形成厌氧处理系统碱度的主要原因,高的碱度具较强的缓冲能力,一般要求碱度2000mg/L以上,NH3浓度50~200mg/L为佳。
先是“厌氧产甲烷",厌氧过程,如果我们不谈释放磷,常见的是水中机物厌氧发酵的过程。机物好氧发酵的过程,大都清楚是一个氧化还原反应,进入水中的氧气作为氧化剂,氧化水中的机污染物变成CO2和H2O,使得(还原性的)COD得以氧化去除。所以很多人理所应当的认为,厌氧是个还原反应喽。



这就必要让抱该观特点的朋友先回忆一下初中化学,氧化反应和还原反应,可以剥离开吗?
显然是不能的,厌氧也是,在进行到产甲烷之前的厌氧发酵过程,基本上是机物自身相互的氧化和还原(这话说得并不严谨,但是方便理解),也就是说机物本身是还原性的,它反应之后变成一部分还原性更强,一部分还原性相对弱一些的两种机物,而这总体上相抵消。所以如果厌氧发酵未到产甲烷地步,COD变化可以忽略不计(这就是水解酸化COD去除率低下的原因)。
当这个过程进行的非常*时,产物逐渐转化为CO2和CH4,主要体现还原性也就是导致水中COD的甲烷因为溶解度低,脱离水相,这是产甲烷过程去除机物COD的原因。

基于水解和酸化两个过程法分开的事实,三相取决于产乙酸和产甲烷是否可以分开。
对于三相分离器的工作原理大致可表述为:气液固三相在气体扰动和液体升流的下从下方进入三相分离器;污泥(固)撞击在三相分离器上,上面吸附的沼气气泡释放出来;沼气气体被三角形集气罩收集;脱离气体的泥水(固液相)穿过三相分离器集气罩之间的缝隙,到达沉淀区;污泥(固)在没气体扰动的条件下沉淀,落回三相分离器下方。核心是气体被收集和污泥沉淀

原理
在厌氧处理过程中,废水中的机物经大量微生物的共同,被终转化为甲烷、二氧化碳、水、硫化氢和氨等。在此过程中,不同微生物的代谢过程相互影响,相互制约,形成了复杂的生态系统。对高分子机物的厌氧过程的叙述,助于我们了解这一过程的基本内容。高分子机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。

水解阶段
水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
高分子机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用。它们在*阶段被细菌胞外酶分解为小分子。例如:纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被分解为麦芽糖和葡萄糖,蛋白质被蛋白质酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。水解过程通常较缓慢,因此被认为是含高分子机物或悬浮物废液厌氧降解的限速阶段。多种因素如温度、机物的组成、水解产物的浓度等可能影响水解的速度与水解的程度。水解速度的可由以下动力学方程加以描述:ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物浓度(g/L)
ρo———非溶解性底物的初始浓度(g/L)
Kh——水解常数(d^-1)
T——停留时间(d)



637969480479697536528.jpg发酵或酸化阶段

发酵可定义为机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
在这一阶段,上述小分子的化合物发酵细菌(即酸化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。发酵细菌大多数是严格厌氧菌,但通常约1%的兼性厌氧菌存在于厌氧环境中,这些兼性厌氧菌能够起到保护像甲烷菌这样的严格厌氧菌免受氧的损害与抑制。这一阶段的主要产物挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等,产物的组成取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此,未酸化废水厌氧处理时产生更多的剩余污泥。
在厌氧降解过程中,酸化细菌对酸的耐受力必须加以考虑。酸化过程pH下降到4时能可以进行。但是产甲烷过程pH值的范围在6.5~7.5之间,因此pH值的下降将会减少甲烷的生成和氢的消耗,并进一步引起酸化末端产物组成的改变。

产乙酸阶段
在产氢产乙酸菌的下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
其某些反应式如下:
CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG’0=-4.2KJ/MOL
CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG’0=9.6KJ/MOL
CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG’0=48.1KJ/MOL
CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG’0=76.1KJ/MOL
4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG’0=-2.9KJ/MOL
2HCO3-+4H2+H+->CH3COO-+4H2O ΔG’0=-70.3KJ/MOL

唐山古冶UASB厌氧反应器

638127502171849087724.jpg

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~

对比框

产品对比 产品对比 联系电话 二维码 意见反馈 在线交流

扫一扫访问手机商铺
在线留言