产地类别 | 国产 | 产品种类 | 其他 |
---|---|---|---|
价格区间 | 面议 | 介质分类 | 气体 |
应用领域 | 环保,食品/农产品,化工,包装/造纸/印刷,纺织/印染 |
对于涡街流量计来说,测量气体流量时,若被测气体含有少量的液体,流量计应安装在管线的较高处。
![]() |
参考价 | 面议 |
更新时间:2020-04-05 18:30:22浏览次数:262
联系我们时请说明是化工仪器网上看到的信息,谢谢!
DN15气体流量计主要安装要求是对于直管段的要求,涡街流量传感器的上游侧和下游侧应有较长的直管段。
对于涡街流量计来说,测量气体流量时,若被测气体含有少量的液体,流量计应安装在管线的较高处。
测量液体时,若被测液体中含有少量的气体,流量计应安装在管线的较低处。
流量传感器是以卡门(Kaman)和斯特劳哈(Strouhsl)有关旋涡的产生和旋涡与流速关系的理论来测量流量的。当介质以一定速度流过三角柱体时,在三角柱体两侧后面产生一个交替排列的旋涡带,称之为“卡门涡街”(见下图)。
由于旋涡发生体两侧交替产生旋涡,于是在发生体两侧产生压力脉动,从而使检测体产生交变压力,封装在探头体内的压电晶体元件在交变应力的作用下,产生与旋涡同频率的交变电荷信号,放大器将这种电荷信号进行放大、滤波、整形、后输出频率与介质流速成正比的脉冲信号(或转换成4 ~20mA信号),送至积算仪进行处理、显示和控制。
一定雷诺数范围内(2×104~7×106 ),旋涡的释放频率f与流体流速V及旋涡发生体的迎流面宽度d之间关系式为f=St·v/d,式中St 为斯特劳哈数,它是一个无量纲的系数,只要准确测出频率f,就可以求得流体流速v,由v求出体积流量。
、基本参数
执行标准 | 涡街流量传感器(JB/T9249-1999) |
仪表口径(mm) | 15、20、25、32、40、50、65、80、100、125、150、200、250、300 |
公称压力(MPa) | 1.6MPa、2.5MPa、4.0MPa(其它可订制) |
精度等级 | 液体:±1% 气体或蒸汽:±1.5%、±1% |
量程比 | 1:10;1:15;1:20 |
传感器材质 | 304不锈钢、316(L)不锈钢等 |
使用条件 | 介质温度:-40℃~+250℃、-40℃~+350℃ 环境温度:-20℃~+60℃ 相对湿度:5%~90% 大气压力:86KPa~106KPa |
信号输出功能 | 脉冲信号、4 ~ 20mA信号 |
通讯输出功能 | RS485通讯输出、HART协议等 |
工作电源 | A.外电源:+24VDC±15%,纹波≤±5%,适用于4-20mA输出、脉冲输出、RS485等 B.内电源:1组3.0V10AH锂电池,电池电压在2.0V~3.0V时均可正常工作。 |
信号线接口 | 基本型:霍斯曼接头或自带三芯线缆;防爆型:内螺纹M20×1.5 |
防爆等级 | ExdIICT5或ExdIIBT6 |
防护等级 | IP65或更高(可订制) |
流量测量范围
口径DNmm | 气体测量范围m3/h | 液体测量范围m3/h |
15 | 0-30 | 0-8 |
25 | 8-60 | 1-12 |
32 | 12-100 | 1.5-20 |
40 | 18-180 | 2.5-30 |
50 | 30-300 | 3-50 |
65 | 50-500 | 6-80 |
80 | 70-700 | 10-125 |
100 | 100-1000 | 15-200 |
125 | 150-1500 | 25-310 |
150 | 200-2000 | 40-445 |
200 | 400-4000 | 90-900 |
250 | 600-6000 | 150-1500 |
300 | 1000-10000 | 200-2000 |
DN15气体流量计
1 临界压力比及其计算公式 当气流处于亚音速时,喉部的气体流速将随节流压力比(即出口压力P1与上游滞止压力P0之比)的减小而增大。当节流压力比减小到一定值时,喉部流速达到大流速----音速,即达到所谓的临界流,此时,如果P0不变,再减小P1(即再减小节
1 临界压力比及其计算公式
当气流处于亚音速时,喉部的气体流速将随节流压力比(即出口压力P1与上游滞止压力P0之比)的减小而增大。当节流压力比减小到一定值时,喉部流速达到大流速----音速,即达到所谓的临界流,此时,如果P0不变,再减小P1(即再减小节流压力比)流速将保持不变,也就是说,流速不再受下游压力的影响。此时的文丘利喷嘴称为音速文丘利喷嘴,又称临界流文丘利喷嘴,此时的节流压力比称为临界压力比。
在理想条件下,即气流是一维流动、等熵、*气体,则从理论上可导出临界压力比的计算公式:
式中,k----气体等熵指数,对于*气体,k等于比热比。
对于空气,k=1.4,则(P1 /P0)= 0.528
2 理想条件下的质量流量
在理想条件下, 音速文丘利喷嘴的质量流量公式:
式中,qmi ---- 音速文丘利喷嘴在理想条件下的质量流量(kg/s)
A* ---- 音速文丘利喷嘴的喉部面积(m2)
C*i ---- 气体在理想条件下的临界流函数
P0 ---- 音速文丘利喷嘴前的气体滞止压力(Pa)
T0 ---- 音速文丘利喷嘴前的气体滞止温度(K)
RM ---- 气体常数(J/(kg×K)),对于空气,R=287.1
3 实际条件下的质量流量
在实际条件下,音速文丘利喷嘴的质量流量公式:式中, qm ---- 音速文丘利喷嘴在实际条件下的质量流量(kg/s)
C*---- 气体在实际条件下的临界流函数,假定气体为一维、等熵流动, 利用实际气体的热力学性质表,可用计算机计算出来。
C ---- 流出系数,C是对“一维、等熵流动” 等假设条件的修正。C只是雷诺数Red的函数。式中,Red ----音速文丘利喷嘴的喉部雷诺数(无量纲)
d ---- 音速文丘利喷嘴的喉部直径(m)
m0 ---- 气体在滞止条件下的动力粘度(kg/(m×s)
从式(4)中可以看出,只要用试验的方法求得流出系数C,就可按测得的滞止压力P0和滞止温度T0(由查表可得C*)计算出质量流量qm。
装置流量范围的选择方法和确定
根据音速喷嘴的流量计算公式(式(4))可知,在临界条件下,改变音速喷嘴的滞止压力值,则可改变通过音速喷嘴的质量流量值。实际上,是通过调节压力调节阀来调节流量。
同样,也可通过改变流通面积来改变流量,即通过若干个音速文丘利喷嘴的组合,或设计时将某一个音速喷嘴的面积增大来达到所需要的流量。在设计高压或常压式音速喷嘴法气体流量标准装置时,都可以采用这种方法。