详细介绍
那里有卖西门子CPU317-2PN/DP
![]() | 6ES7317-2EK14-0AB0 SIMATIC S7-300 CPU 317-2 PN/DP, 中央处理器,带 1MB 主存储器, 1 个 MPI/DP 12MBit/s 接口, 2 个 以太网 PROFINET 接口, 带双端口交换机, 需要微型存储卡 |
西门子将展示其不断完善的数字化企业解决方案,致力于实现“工业4.0”愿景,即第四次工业革命。“凭借一系列协同解决方案,我们为这种转型创造了技术上的先决条件。通过实施数字化企业解决方案,用户和客户现在可以充分挖掘‘工业4.0’所带来的全部潜力。”西门子股份公司管理委员会成员何睿祺(Klaus Helmrich)在4月23日的汉诺威工业博览会新闻发布会上表示。西门子在位于9号展厅D35展位3,500平方米的展台上,以“实现数字化企业——正当时!”为主题,展示了不同规模的企业该如何利用多个针对行业的数字化企业解决方案,来确保获得真正的竞争优势。“通过我们的数字化企业产品和解决方案,我们的客户已经实现了更高的灵活性、更短的产品上市时间、更高的生产效率以及更好的产品质量——而且这些都是在不中断运营的情况下同步实现的。因此,我们的客户就是西门子数字化企业解决方案能够为离散型工业和过程工业带来优势与附加价值的优秀证明。”何睿祺表示。
西门子股份公司管理委员会成员何睿祺(Klaus Helmrich)在4月23日的汉诺威工业博览会新闻发布会上讲话
展会的亮点集中在数字化企业解决方案的进一步拓展——在设计、制造过程和架构领域,西门子可提供更为灵活的解决方案。其中包括数字化双胞胎解决方案。此解决方案与西门子优秀的自动化产品组合,以及基于云的开放式物联网操作系统MindSphere共同创造了覆盖生产全价值链的数字虚拟模型。与MindSphere的互联,是实现数据驱动的新商业模式的基础之一。“通过建立MindSphere World,我们与客户及合作伙伴共同迈出了拓展MindSphere生态系统的新一步。对我们的客户来说,西门子的MindSphere物联网操作系统提供了设备互联和数据分析的新维度。此外,我也很高兴MindSphere World管理委员会已经批准了16个新候选机构的加入申请。”何睿祺表示。
西门子股份公司总裁兼*执行官凯飒(Joe Kaeser)向德国总理默克尔和墨西哥总统培尼亚赠送运用西门子技术制造的运动鞋
在本次汉诺威工业博览会上,西门子还将展示其在云应用开发方面的创新。西门子将与客户和合作伙伴一起,在MindSphere体验区展示MindSphere 3.0版本的新更新与应用程序。此外,作为MindSphere Open Space Challenge(MindSphere开放空间挑战)的一部分,外部开发者与初创公司将携手进行开放式合作,共同创造基于MindSphere的新型客户解决方案和商业模式。
西门子在汉诺威工业博览会上还展示了面向未来的数据驱动应用——例如,Siemens Industrial Edge概念,这一边缘计算解决方案可以使用户*控制数据,并从其扩展功能和出色的现场性能中获益。在增材制造领域,西门子展示了其无缝集成的产品组合和西门子增材制造网络。在西门子增材制造网络这一线上市场中,供应商、3D打印解决方案的现有及潜在用户等不同参与者都可以建立并确定商业伙伴关系。
西门子2018年汉诺威工业博览会展台
在数字化时代,确保足够的网络信息安全水平是保护敏感数据的前提。西门子正在持续推动工业应用和基础设施领域网络信息安全的发展。基于“深度防御”理念,西门子为工业领域提供广泛的产品和服务组合,其中包括工厂和网络安全以及系统完整性。
在2018年汉诺威工业博览会上,西门子以汽车工业为例,说明了数字化如何能够提升设计的灵活性和汽车制造的效率。数字化企业解决方案能提供获得这些益处的手段。这包括充分整合生产的各个阶段并建立统一的数据基础,覆盖汽车设计、生产规划、汽车实际制造执行,以及后续服务提供等阶段。解决方案既适用于新建的生产工厂,也适用于现有工厂的升级,尤其对于添加了电动汽车和混合动力汽车的产线而言。
西门子2018年汉诺威工业博览会展台
过程工业的数字化转型已经全面展开。在这方面,西门子能够为企业提供包括一体化硬件和软件的解决方案,从而使任何规模的公司都能够实现数字化。在西门子的展台上,参观者可以了解到多乐士(Dulux)如何使用西门子的数字化解决方案成功成为一家数字化涂料工厂。一个真实工厂的虚拟模型,即“数字化双胞胎”,可以为多乐士这样的工厂运营商提供足够的灵活性,以快速响应迅速变化的市场需求,比如生产季节流行的油漆颜色或进行小批量生产。
航空航天行业在数字化转型方面一直处于优秀。该行业产品的市场需求强劲,只有显着提高生产率才能满足。这就需要通过提高自动化程度并实现数字化工具和工作流程的端到端集成。依靠西门子数字化企业解决方案,中小型企业以及大型企业已经实现了在这些领域的提升,从而确保其竞争力。日益提高的灵活性使高效制造日趋多样化的模型成为可能,即使这些模型批量较小。在2018年汉诺威工业博览会上,西门子正通过具体的案例来展示公司在此方面的能力。那里有卖西门子CPU317-2PN/DP
西门子MM4系列变频器都集成了串行接口,支持USS通信协议,通过USS协议可以对变频器进行控制和读写变频器参数。使用S7-300PLC有以下两种通讯方案:
1. 按照USS协议要求编写通讯报文,计算BCC校验,适用于从站数量比较少,较简单的应用;
2. 采用DriveES SIMATIC软件提供的S7-300库程序,自动生成从站轮询表程序,适用于从站数量比较多,较复杂的应用。
本文主要介绍通过*种方案实现CPU314-2PtP与MM440的USS通讯。使用S7-300编写USS通讯程序分为以下几个步骤:
1. 依据USS协议编写报文;
2. 使用S7-300提供的串口数据发送程序发送USS报文;
3. 使用S7-300提供的串口数据接收程序接收USS报文;
4. 依据USS协议分析接收到的报文。
本文根据这4个步骤编写了如下内容:第1节简单介绍USS协议内容,了解USS协议报文格式;第2节根据USS协议列举了4条报文;第3节介绍PLC和变频器USS通讯的硬件组态;第4节介绍通过调用PLC中的发送和接收功能块实现USS协议报文的发送和接收。
1 USS协议介绍
USS协议是西门子专为驱动装置开发的通信协议。USS的工作机制是,通信是由主站发起,USS主站不断循环轮询各个从站,从站根据收到的指令,决定是否响应主站。从站不会主动发送数据。从站在以下条件满足时应答主站:接收到主站报文没有错误,并且本从站在接收到主站的报文中被寻址,上述条件不满足或者主站发出的是广播报文,从站不会做任何响应。USS的字符传输格式为11位,其中1位起始位、8位数据位、1偶校验、1位停止位。如下表所示:
起始位 | 数据位 | 校验位 | 停止位 | |||||||
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 偶X1 | 1 |
LSB | MSB |
USS字符帧结构
USS协议的报文由一连串的字符组成,协议中定义了它们的功能,如下表所示:
STX | LGE | ADR | 有效据区 | BCC | ||||
1 | 2 | 3 | … | n |
USS报文结构
? STX:长度1个字节,总是为02(Hex),表示一条信息的开始;
? LGE:长度1个字节,表明在LGE后字节的数量,上表中黄色区域长度;
? ADR:长度1个字节,表明从站地址;
? BCC:长度1个字节,异或校验和,USS报文中BCC前面所有字节异或运算的结果;
? 有效数据区:由PKW区和PZD区组成,如下表所示。
PKW区 | PZD区 | ||||||||
PKE | IND | PWE1 | PWE2 | … | PWEm | PZD1 | PZD2 | PZD1 | PZDn |
USS有效数据区
PKW区用于主站读写从站变频器参数:
? PKE:长度一个字,结构如下表,任务或应答ID请参考《MM440使用大全》第13章。
Bit15- Bit 12 Bit 11 Bit 10-Bit 0
Bit15- Bit 12 | Bit 11 | Bit 10-Bit 0 |
任务或应答ID | 0 | 基本参数号PNU |
PKW结构
变频器参数号<2000时,基本参数号PNU=变频器参数号,例如P700的基本参数号PNU=2BC(Hex)(700(Dec)=2BC(Hex))。
变频器参数号>=2000时,基本参数号PNU=变频器参数号-2000(Dec),例如P2155的基本参数号PNU=9B(Hex)(2155-2000=155(Dec)=9B(Hex))。
? IND:长度一个字,结构如下表。
Bit15- Bit 12 | Bit 11- Bit 8 | Bit 7 - Bit 0 |
PNU扩展 | 0(Hex) | 参数下标 |
IND结构
变频器参数号<2000时,PNU扩展=0(Hex)。
变频器参数号>=2000时,PNU扩展=8(Hex)。
参数下标,例如P2155[2]中括号中的2表示参数下标为2。
? PWE:读取或写入参数的数值
PZD区用于主站与从站交换过程值数据:
? PZD1: 主站?从站 控制字
主站?从站 状态字
? PZD2: 主站?从站 速度设定值
主站?从站 速度反馈值
? PZDn: MM430/440支持多8个PZD,MM420支持多4个PZD
根据传输的数据类型和驱动装置的不同,PKW和PZD区的数据长度不是固定的,可以通过P2012、P2013 设置。本例采用4PKW,2PZD报文格式。
2 USS协议报文定义
本文通过发送4个不同功能的报文来演示自定义USS报文的方法,USS协议详细说明请参照《MM440使用大全》第13章。
例1.把参数P2155[2]的数值修改为40.00Hz
字节数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
发送报文 | 2 | 0E | 1 | 30 | 9B | 80 | 2 | 42 | 20 | 0 | 0 | 4 | 7E | 0 | 0 | 3C |
应答报文 | 2 | 0E | 1 | 20 | 9B | 80 | 2 | 42 | 20 | 0 | 0 | FB | 31 | 0 | 0 | 9C |
报文解释:
STX | Byte1 | 起始字符 |
LGE | Byte2 | 报文长度(字节3到字节16共14个字节) |
ADR | Byte3 | 从站地址 |
PKW | Byte4-5 | PKE内容: |
Bit15- Bit 12(任务ID) =3(Hex),修改参数数值双字 | ||
Bit15- Bit 12(应答ID) =2(Hex),传送参数数值双字 | ||
Bit10- Bit 0(基本参数号PUN)=2155-2000(Dec)=9B(Hex) | ||
Byte6-7 | IND内容: | |
Bit15- Bit 12(PNU扩展) =8(Hex),参数号大于2000 | ||
Bit7- Bit 0(参数下标)=2(Hex),P2155[2] | ||
Byte8-11 | 参数值,42 20 00 00(Hex)=40.0(浮点数) | |
PZD | Byte12-13 | PZD1 |
Byte14-15 | PZD2 | |
BCC | Byte16 | 异或校验和 |
注:黄色标记表示应答报文中的内容
例2.读取参数P0700[0]的数值
字节数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
发送报文 | 2 | 0E | 1 | 12 | BC | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 7E | 0 | 0 | D9 |
应答报文 | 2 | 0E | 1 | 12 | BC | 0 | 0 | 0 | 0 | 0 | 5 | FB | 31 | 0 | 0 | 6C |
报文解释:
STX | Byte1 | 起始字符 |
LGE | Byte2 | 报文长度(字节3到字节16共14个字节) |
ADR | Byte3 | 从站地址 |
PKW | Byte4-5 | PKE内容: |
Bit15- Bit 12(任务ID) =1(Hex),读取参数数值 | ||
Bit15- Bit 12(应答ID) =1(Hex),传送参数数值单字 | ||
Bit10- Bit 0(基本参数号PUN)=700(Dec)=2BC(Hex) | ||
Byte6-7 | IND内容: | |
Bit15- Bit 12(PNU扩展) =0(Hex),参数号小于2000 | ||
Bit7- Bit 0(参数下标)=0(Hex),P700[0] | ||
Byte8-11 | 参数值,5(Hex)=5(Dec) | |
PZD | Byte12-13 | PZD1 |
Byte14-15 | PZD2 | |
BCC | Byte16 | 异或校验和 |
注:黄色标记表示应答报文中的内容
例3.不需要读写参数只发送停止变频器报文
字节数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
发送报文 | 2 | 0E | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 7E | 0 | 0 | 77 |
应答报文 | 2 | 0E | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | FB | 31 | 0 | 0 | C7 |
例4.不需要读写参数只送启动变频器、设定频率50Hz报文
字节数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
发送报文 | 2 | 0E | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 7F | 40 | 0 | 36 |
应答报文 | 2 | 0E | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | FF | 34 | 3F | FF | 6 |
例3、4报文比较简单只需要定义PZD中的内容,PKW区内容可以设置为0。
请注意:如果按照以上4个例子发送报文可能会收到与例子中不一样的应答报文,这并不代表报文存在问题,可能由于变频器状态不同或参数设置不同造成。例子报文中已经计算了BCC校验的值,如果使用其他的报文需要自己计算BCC校验。
3 硬件组态
MM4系列变频器提供的串行接口为RS485接口,S7-300 PLC有3种通讯模块支持RS485接口:
1. 采用带有集成RS485接口的CPU例如CPU31X-2PtP;
2. RS485接口的CP340通讯模块;
3. RS485接口的CP341通讯模块;
以上三种模块都可以通过下表中的接线方式与MM4变频器连接,本文中采用1台CPU314-2PtP与1台MM440通讯。
信号 | CPU314-2PtP | MM430/MM440 | MM420 |
RS485接口针脚 | 端子 | 端子 | |
P+ | 11 | 29 | 14 |
N- | 4 | 30 | 15 |
S7-300 RS485接口与MM440 USS接线
3.1 PLC硬件组态
1) 首先打开STEP7新建项目并插入CPU314-2PtP。
2) 双击CPU314-2PtP的X2端口PtP,打开PTP属性对话框General栏,Protocol复选框中选择“ASCII”协议。
3) Addresses栏中记录起始地址“1023”,在后面的编程中使用。
4) Transfer栏中设置通讯速率“9600bps”,报文格式:“8”位数据位,“1”位停止位,“Even”偶校验,数据流控制选择“None”。
5) End Delimiter栏中设置接收报文结束方式“After character delay time elapses”利用两个报文的间隔时间来判断报文是否结束,并设置字符延时时间“4ms”(该时间可使用默认设置,默认设置时间随通讯速率不同时间也不同)。
1.1 热电偶的工作原理
热电偶和热电阻一样,都是用来测量温度的。
热电偶是将两种不同金属或合金金属焊接起来,构成一个闭合回路,利用温差电势原理来测量温度的,当热电偶两种金属的两端有温度差,回路就会产生热电动势,温差越大,热电动势越大,利用测量热电动势这个原理来测量温度。
结构示意图如下:
图1 热电偶测量结构示意图
注意:如上图所示,热电偶是有正负极性的,所以需要确保这些导线连接到正确的极性,否则将会造成明显的测量误差
为了保证热电偶可靠、稳定地工作,安装要求如下:
① 组成热电偶的两个热电极的焊接必须牢固;
② 两个热电极彼此之间应很好地绝缘,以防短路;
③ 补偿导线与热电偶自由端的连接要方便可靠;
④ 保护套管应能保证热电极与有害介质充分隔离;
⑤ 热电偶对于外界的干扰比较敏感,因此安装还需要考虑屏蔽的问题。
1.2 热电偶与热电阻的区别
属性 | 热电阻 | 热电偶 |
信号的性质 | 电阻信号 | 电压信号 |
测量范围 | 低温检测 | 高温检测 |
材料 | 一种金属材料(温度敏感变化的金属材料) | 双金属材料在(两种不同的金属,由于温度的变化,在两个不同金属的两端产生电动势差) |
测量原理 | 电阻随温度变化的性质来测量 | 基于热电效应来测量温度 |
补偿方式 | 3线制和4线制接线 | 内部补偿和外部补偿 |
电缆接点要求 | 电阻直接接入可以更精确的避免线路的的损耗 | 要通过补偿导线直接接入到模板;或补偿导线接到参比接点,然后用铜制导线接到模板 |
表1 热电偶与热电阻的比较
2. 热电偶的类型和可用模板
2.1热电偶类型
根据使用材料的不同,分不同类型的热电偶,以分度号区分,分度号代表温度范围,且代表每种分度号的热电偶具体多少温度输出多少毫伏的电压,热电偶的分度号有主要有以下几种。
分度号 | 温度范围(℃) | 两种金属材料 |
B型 | 0~1820 | 铂铑—铂铑 |
C型 | 0~2315 | 钨3稀土—钨26 稀土 |
E型 | -270~1000 | 镍铬—铜镍 |
J型 | -210~1200 | 铁—铜镍 |
K型 | -270~1372 | 镍铬—镍硅 |
L型 | -200~900 | 铁—铜镍 |
N型 | -270~1300 | 镍铬硅—镍硅 |
R型 | -50~1769 | 铂铑—铂 |
S型 | -50~1769 | 铂铑—铂 |
T型 | -270~400 | 铜—铜镍 |
U型 | -270~600 | 铜—铜镍 |
表2 分度号对照表
2.2可用的模板
CPU类型 | 模板类型 | 支持热电偶类型 |
S7-300 | 6ES7 331-7KF02-0AB0(8点) | E,J,K,L,N |
6ES7 331-7KB02-0AB0(2点) | E,J,K,L,N | |
6ES7 331-7PF11-0AB0(8点) | B,C,E,J,K,L,N,R,S,T,U | |
S7-400 | 6ES7 431-1KF10-0AB0(8点) | B,E,J,K,L,N,R,S,T,U |
6ES7 431-7QH00-0AB0(16点) | B,E,J,K,L,N,R,S,T,U | |
6ES7 431-7KF00-0AB0(8点) | B,E,J,K,L,N,R,S,T,U |
表3 S7 300/400 支持热电偶的模板及对应热电偶类型
3. 热电偶的补偿接线
3.1 补偿方式
热电偶测量温度时要求冷端的温度保持不变,这样产生的热电势大小才与测量温度呈一定的比例关系。若测量时冷端的环境温度变化,将严重影响测量的准确性,所以需要对冷端温度变化造成的影响采取一定补偿的措施。
由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到控制仪表的距离都很远,为了节省热电偶材料,降低成本可以用补偿导线延伸冷端到温度比较稳定的控制室内,但补偿导线的材质要和热电偶的导线材质相同。热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度变化造成的影响,补偿方式见下表。
温度补偿方式 | 说 明 | 接 线 | |
内部补偿 | 使用模板的内部温度为参比接点进行补偿,再由模板进行处理。 | 直接用补偿导线连接热电偶到模拟量模板输入端。 | |
外部补偿 | 补偿盒 | 使用补偿盒采集并补偿参比接点温度,不需要模板进行处理。 | 可以使用铜质导线连接参比接点和模拟量模板输入端。 |
热电阻 | 使用热电阻采集参比接点温度,再由模板进行处理。 | ||
如果参比接点温度恒定可以不要热电阻参考 |
表4 各类补偿方式
3.2各补偿方式接线
3.2.1内部补偿
内部补偿是在输入模板的端子上建立参比接点,所以需要将热电偶直接连接到模板的输入端,或通过补偿导线间接的连接到输入端。每个通道组必须接相同类型的热电偶,连接示意图如下。
CPU类型 | 支持内部补偿模板类型 | 可连接热电偶个数 |
S7-300 | 6ES7 331-7KF02-0AB0 | 多8个(4种类型,同通道组必须相同) |
6ES7 331-7KB02-0AB0 | 多2个(1种类型,同通道组必须相同) | |
6ES7 331-7PF11-0AB0 | 多8个(8种类型) | |
S7-400 | 6ES7 431-7KF00-0AB0 | 多8个(8种类型) |
表5 支持内部补偿的模板及可接热电偶个数
图2 内部补偿接线
注1:模板6ES7 331-7KF02-0AB0和6ES7 331-7KB02-0AB0需要短接补偿端COMP+(10)和Mana(11),其它模板无。
3.2.2 外部补偿—补偿盒
补偿盒方式是通过补偿盒获取热电偶的参比接点的温度,但补偿盒必须安装在热电偶的参比接点处。
补偿盒必须单独供电,电源模块必须具有充分的噪声滤波功能,例如使用接地电缆屏蔽。
补偿盒包含一个桥接电路,固定参比接点温度标定,如果实际温度与补偿温度有偏差,桥接热敏电阻会发生变化,产生正的或者负的补偿电压叠加到测量电势差信号上,从而达到补偿调节的目的。
补偿盒采用参比接点温度为0℃的补偿盒,推荐使用西门子带集成电源装置的补偿盒,订货号如下表。
推荐使用的补偿盒 | 订货号 | ||
带有集成电源装置的参比端,用于导轨安装 | M72166-V V V V V | ||
辅助电源 | B1 | 230VAC | ![]() |
B2 | 110VAC | ||
B3 | 24VAC | ||
B4 | 24VDC | ||
连接到热电偶 | 1 | L型 | |
2 | J型 | ||
3 | K型 | ||
4 | S型 | ||
5 | R型 | ||
6 | U型 | ||
7 | T型 | ||
参考温度 | 00 | 0℃ |
表6 西门子参比接点的补偿盒订货数据
图3 S7-300模板支持接线方式
图3 类型:热电偶通过补偿导线连接到参比接点,再用铜质导线连接参比接点和模板的输入端子构成回路,同时由一个补偿盒对模板连接的所有热电偶进行公共补偿,补偿盒的9,8端子连接到模板的补偿端COMP+(10)和Mana(11),所以模板的所有通道必须连接同类型的热电偶。
图4 S7-400模板支持接线方式
图4 类型:模板的各个通道单独连接一个补偿盒,补偿盒通过热电偶的补偿导线直接连接到模板的输入端子构成回路,所以模板的每个通道都可以使用模板支持类型的热电偶,但是每个通道都需要补偿盒。
CPU类型 | 支持外部补偿盒补偿模板类型 | 可连接热电偶个数 |
S7-300 | 6ES7 331-7KF02-0AB0 | 多8个(同类型) |
6ES7 331-7KB02-0AB0 | 多2个(同类型) | |
S7-400 | 6ES7 431-1KF10-0AB0 | 多8个(类型可不同) |
6ES7 431-7QH00-0AB0 | 多16个(类型可不同) |
表7 支持外部补偿盒补偿的模板及可接热电偶个数
3.2.3 外部补偿—热电阻
热电阻方式是通过外接电阻温度计获取热电偶的参比接点的温度,再由模板处理然后进行温度补偿,同样热电阻必须安装在热电偶的参比接点处。
图5 S7-300模板支持方式
图5类型:参比接点电阻温度计pt100的四根线接到模板的35,36,37,38端子,对应(M+,M-,I+,I-),可测参比接点出温度范围为-25℃到85℃,
图6 S7-400模板支持方式
图6类型:参比接点电阻温度计的四根线接到模板的通道0,占用通道。
以上这两种方式,参比接点到模板的线可以用铜质导线,由于做公共补偿,只能接同类型的热电偶。
CPU类型 | 支持热电阻补偿模板类型 | 可连接热电偶个数 |
S7-300 | 6ES7 331-7PF11-0AB0 | 多8个(同类型) |
S7-400 | 6ES7 431-1KF10-0AB0 | 多6个(同类型) |
6ES7 431-7QH00-0AB0 | 多14个(同类型) |
表8 支持热电阻补偿的模板及可接热电偶个数
3.2.4外部补偿—固定温度
如果外部参比接点的温度已知且固定,可以通过选择相应的补偿方式由模板内部处理补偿,组态设置详见下章节。
CPU类型 | 支持固定温度补偿模板类型 | 可连接热电偶个数 | 可设定温度范围 |
S7-300 | 6ES7 331-7PF11-0AB0 | 多8个(同类型) | 0℃或50℃ |
S7-400 | 6ES7 431-1KF10-0AB0 | 多8个(同类型) | -27*℃~327.67℃ |
6ES7 431-7QH00-0AB0 | 多16个(同类型) | -27*℃~327.67℃ | |
6ES7 431-7KF00-0AB0 | 多8个(同类型) | -27*℃~327.67℃ |
表9支持固定温度补偿的模板及可接热电偶个数
从上表可以看出,300的模板只支持参比接点的温度为0℃或50℃两种,而400的模板支持可变温度范围,且范围大。
3.2.4混合补偿—热电阻和固定温度补偿
另外,除单独补偿方式外,可以使用相同参比接点给多个模板,通过电阻温度计进行外部补偿,S7-400的模板支持这种方式,补偿示意图如下。
图7 混合外部补偿
补偿过程:如图所示,模板2和1 有公共的参比接点,模板1进行外部电阻温度计补偿方式,由CPU读取RTD的温度,然后使用系统功能SFC55(WR_PARM)将温度值写入到模板2中,模板2选择固定温度补偿的方式。
SFC55只能对模板的动态参数进行修改,模拟量输入模板的静态参数(数据记录0)和动态参数(数据记录1)的参数及数据记录1的结构如下:
参数 | 数据记录号 | 参数分配方式 | |
SFC55 | STEP7 | ||
用于中断的目标CPU | 0 | 否 | 是 |
测量方法 | 0 | 否 | 是 |
测量范围 | 0 | 否 | 是 |
诊断 | 0 | 否 | 是 |
温度单位 | 0 | 否 | 是 |
温度系统 | 0 | 否 | 是 |
噪声抑制 | 0 | 否 | 是 |
滤波 | 0 | 否 | 是 |
参比接点 | 0 | 否 | 是 |
周期结束中断 | 0 | 否 | 是 |
诊断中断启用 | 1 | 是 | 是 |
硬件中断启用 | 1 | 是 | 是 |
参考温度 | 1 | 是 | 是 |
上限 | 1 | 是 | 是 |
下限 | 1 | 是 | 是 |
表10 S7-400模拟量输入模板的参数
图8 S7-400模拟量输入模板的数据记录1的结构
以6ES7 431-7QH00-0AB0 模拟量输入模板为例,程序块SFC55调用:
图9 SFC55系统块调用
当M0.0上升沿使能时,将写入的参数从MB100~MB166传递到输入地址为100开始的模板,修改其数据记录1的参数,同时也将参比接点的温度也写入模板的设定位置。
参数 | 声明 | 数据类型 | 描述 |
REQ | INPUT | BOOL | REQ=1,写请求,上升沿信号。 |
IOID | INPUT | BYTE | 地址区域的标识号:外设输入=B#16#54; 外设输出=B#16#55; 外设输入/输出混合,如果地址相同,为B#16#54,不同则低地址的区域ID。 |
LADDR | INPUT | WORD | 模板的逻辑地址(初始地址),如果混合模板,两个地址中的较低的一个。 |
RECNUM | INPUT | BYTE | 数据记录号,参考模板数据手册。 |
RECORD | INPUT | ANY | 需要传送的数据记录存放区。 |
RET_VAL | OUTPUT | INT | 故障代码。 |
BUSY | OUTPUT | BOOL | BUSY=1,写操作未完成。 |
表11 各参数的说明
4. 热电偶的信号处理方式
4.1 硬件组态设置
首先要在硬件组态选择与外部补偿接线*的measuring type(测量类型),measuring range(测量范围),reference junction(参比接点类型)和reference temperature(参比接点温度)的参数,如下各图所示。
图10 S7-300模板测量方式示意图
图11 S7-300模板测量范围示意图