详细介绍
西门子6SL3055-0AA00-4BA0
6SL3055-0AA00-4BA0
SINAMICS S120 操作部分带缩略图显示 BOP 20 2 行,6 个按键 用来设置参数和制作 诊断。 适用于控制单元 CU305,CU310,CU320
西门子将在2018年汉诺威工业博览会(Hannover Messe)上通过呈现丰富的案例,*展示用户如何通过实施数字化企业解决方案来充分挖掘工业4.0的潜力。西门子位于9号展厅的展位面积达3500平米,聚焦数字化企业解决方案在不同行业的全生命周期中的应用。来自航空航天、汽车、食品饮料、电子和设备制造以及化工、纤维和石油天然气等行业的诸多实例展示了不同行业不同规模的企业如何通过个性化的数字化解决方案提升竞争力,实现更高的灵活性、效率和质量,并缩短产品上市时间。MindSphere 3.0版本、来自西门子、合作伙伴(如原始设备制造商)及用户组织 MindSphere World的切实案例,将亮相700平米的MindSphere展厅。西门子还将展示生产商目前如何受益于工业增材制造,以及基于MindSphere对驱动数据进行评估的全新数字化平台Sidrive IQ。另外,西门子展位还将以使用MindApps进行智慧能源管理为重点,展示面向工业企业和电力公司领域的基础设施项目的集成解决方案。
西门子还将展示当今的企业如何通过数字化解决方案增强竞争力,如在全价值链建立数字化双胞胎,采用基于云的开放式物联网操作系统MindSphere,以及运用来自西门子的优秀的自动化产品组合。在几乎任何行业,价值链的集成和数字化都能带来更高的灵活性、效率和质量,从而获得可持续的竞争优势,同时也在价值增值、创新商业模式和面向未来的合作方式方面提供了新的机遇。
西门子将在展会上展示MindSphere 3.0版本,该版本现已部署于亚马逊 AWS(Amazon Web Services)云计算服务平台。3.0版本具备更强大的开发环境,提供开放式编程接口(API/应用程序编程接口),并新增分析功能和扩展连接功能。西门子还将在展会上介绍全新的用户组织MindSphere World。该组织拥有18个创始成员,其目标是在扩展围绕MindSphere的生态系统。
在离散工业充分利用数字化潜力
“依托数字化企业套件,我们能够支持离散行业的产品制造商与设备制造商实现数字化转型。”西门子股份公司数字化工厂集团*执行官Jan Mrosik表示,“我们可以针对产品、生产和绩效建立数字化双胞胎,对其进行全面的虚拟仿真。通过利用从MindSphere中获得的知识,我们能够持续帮助客户优化其整个价值链。这不仅适用于不同行业和传统生产方式,也适用于增材制造等新技术。”增材制造也是西门子在本年度展会上的一个焦点。西门子是一一家涵盖增材制造价值链各个环节的集成式软件和硬件解决方案的供应商。对用户而言,这意味着整个数字化流程链都将整合在一个集成的软件环境下。工程、仿真、产品制备和3D打印所需的工具都合并在一个集成系统中,并可通过标准化的用户界面来访问。这样就不必进行数据转换,也避免了相关信息内容丢失的可能。这使用户能从单机的原型设计和小批量生产迅速转化为*工业化的批量生产。
另外,西门子还将展示围绕Simatic自动化系统的一系列新应用。全新Simatic MindApps应用程序如 Machine Monitor、Notifier和Performance Monitor是专为MindSphere而设计的特殊应用,让用户可以充分利用云服务的优势并实现增值。Simatic MindApps从生产设备导出相关数据进行分析,将其处理成有意义的信息并显示在仪表板上,或将其用作智能报警系统和消息显示的基础。为确保这些数据与其所服务的工厂和基础设施一样安全,Simatic MindApps采用了符合IEC 62443标准的“纵深防御”理念,以防范当前和未来的网络威胁。
西门子将推出新一代软起动器Sirius 3RW5,能满足从简单到复杂的驱动需求。该系列设备专为确保5.5-1,200 kW三相异步电机的平稳启动而设计,可用于以极其简单、经济的方式实施高效的、面向未来的机器概念。
过程工业各行业进入数字化
“现在正是利用数字化潜力和优势来优化过程工业整个价值链的时机。”西门子股份公司过程工业与驱动集团*执行官Jürgen Brandes强调,这对新建(绿地)工厂与现有(棕地)工厂同样适用。重要的*步是*地使用公司已有的静态和动态数据,以实现全生命周期各个环节的透明度,以此为基础实现优化。“得益于我们深厚的电气化和自动化专业知识,我们支持不同企业实施相应的数字化转型。在每个案例中,我们的产品都根据客户的增值和商业模式量身定制。”在此,西门子全新“数字化咨询”理念能够起到重要作用。这需要与客户开展合作,理清整个价值链各个环节公司的数字化转型范围,并绘制数字化路线图,包括计算所需的投资。
过程工厂的数字化双胞胎在其中发挥着重要作用。数字化双胞胎模型始于工程设计阶段,并且通过工厂整个生命周期不同阶段的数据获得更新和丰富。对来自工厂现场层的过程数据及其他智能传感器数据的持续分析,可带来全新的透明度水平,从而实现过程维护和服务的显着改善。数字化双胞胎在工厂试车时也能带来决定性的益处。在此,Simit仿真软件9.1版本能以更简单的方式结合虚拟工厂试车和用户培训,从而将实际试车速度加快60%,并将停机时间降至低——特别是在工厂转型和升级过程中。
西门子在汉诺威工业博览会上展示的另一项创新成果是Sidrive IQ,这是利用MindSphere评估驱动数据的一个全新数字化平台。它能为工厂和设备用户提供针对已安装驱动系统的全新数据透明度,简化机队管理并优化维修服务。对数据的连续分析可以节省时间并延长设备正常运行时间,譬如通过及早发现并纠正可能的错误根源的方式。这些益处使Sidrive IQ成为在整个生命周期各个环节提高驱动技术的效率和生产力的基础。
时间敏感型联网TSN是本次展示的另一个主题。即使在的网络负载下,TSN也可以实现自动化设备之间更强大、可靠和标准化的以太网通信。Profinet网络基础设施未来将会逐步升级,集成基本的TSN技术。作为实现这一目标的*步,西门子将展示基于TSN的OPC UA PubSub如何用在控制层级——以展会机器人模型为例。
智能能源管理
如果没有稳定的能源供应,顺畅的生产运行和不间断的生产流程是不可想象的。工业对能源的需求日益增长,需要全新的能源解决方案—提高效率以降低能源成本,从而增强竞争力。汉诺威展会上西门子展位的亮点之一是无缝交互带来的客户受益,这些交互发生在安全可靠的能源供应解决方案、具备通信功能的计量设备和复杂的数据分析之间。这些交互带来能源透明度,能源透明度对实现优秀能源管理至关重要。西门子股份公司能源管理集团*执行官Ralf Christian表示:“这还包括寻找更智能的方法,处理当今配电领域不断增加的海量数据。利用数字化应用,我们能为客户提供智能分析工具,提高运营效率。”以西班牙汽车制造商Gestamp为案例,西门子将展示更高的能源透明度如何助力实现节能15%并使二氧化碳的排放显着降低。收集的数据还将上传到MindSphere。MindApp Energy Efficiency Analytics应用程序可计算能源需求,根据实际情况给出减少负荷的并利用来自多个地点的实时耗能数据,帮助优化工厂和生产流程,从而降低企业的总能耗。Ralf Christian解释说,“在业界寻找降低生产成本的新方法方面,除优化能源效率外,自发电变得越来越有吸引力。”在汉诺威展会上,西门子将展示公司如何消弭用电高峰,充分利用波动电价,并创造额外收入—譬如通过参与能源平衡市场的方式。需求响应、电池储能系统和微电网控制相关方面也纳入在西门子的解决方案中。
除位于9号展厅的主展位外,西门子还与位于6号展厅的合作伙伴密切合作,展示PLM软件组合。在27号展厅“综合能源广场”,来访者将能了解整个综合系统的工作原理,其中涉及能源生产、分配和储能、能源需求等各个环节。在此背景下,西门子将展示电动汽车亮点:来访者将能发现充电基础设施的完整解决方案,并了解组件、充电管理系统和完整的端到端解决方案相关信息。
问题:在S7-CPU中使用嵌套程序需要注意什么,如何使用?
回答:S7-CPU支持嵌套程序,但对于不同的CPU类型,在使用时需要注意一些问题。
1. 不同的CPU类型,支持的嵌套程序深度不同,用户可在CPU的技术数据中查到此参数,以6ES7315-2AG10-0AB0为例。
图1:CPU的嵌套深度参数
2. 用户可以按照如下方式使用嵌套功能:
a) 在某个优先级组织块中调用多个嵌套FC/FB。例如,在OB1 (优先级为1)调用FC1,FC1中调用FC2,FC2中调用FC3,等等,一直到FC7,与OB1共8层深度。如果在FC7 中又调用了FC8 ,此时会导致CPU 停机,在CPU在线信息界面中可查看到此情况,如图2所示。用户也可在OB35(优先级为12)调用FC11,FC11中调用FC12,FC12中调用FC13,等等,一直到FC17。
图2:嵌套调用
b) 在某个优先级中调用某个FC,此FC多次调用自身。例如,在OB1 (优先级为1)调用FC1,FC1中仍然调用FC1,用户在FC1 的程序中必须编程累计FC1被调用的次数,如果达到了7次,则需要从FC1 中跳出调用(此方法即为软件行业广泛应用的递归编程方法)。如果在FC1 调用自身次数超出了CPU允许的嵌套深度,此时会导致CPU 停机。
3. 当用户在使用嵌套功能时,可能出现几种错误:
a) The nesting depth of block calls (U-Stack) is too high(嵌套深度太高)。例如:
? 用户在某个优先级(如OB1)中调用嵌套程序深度超出所使用CPU支持深度,如第2节(a) 部分所描述。
? 用户在某个优先级(如OB1)中调用嵌套程序深度超出所使用CPU支持深度,如第2节(b) 部分所描述。
此时CPU将报16#4575错,如图3所示:
西门子6SL3055-0AA00-4BA0
图3:同步错误嵌套1
b) The nesting depth of synchronous errors is too high(同步错误嵌套深度太高)。例如:
? 用户在OB1中使用L DB1.DBB0 语句(CPU中并未下载DB1),
? 此时CPU出现编程错误,将调用OB121。
? 如果用户在下载的OB121中又使用了L DB1.DBB0 指令,将导致CPU停机
此时CPU将报16#4573错,如图4所示:
图4:同步错误嵌套2
c) Error during allocation of local data (分配本地数据错误) 。对于S7-CPU每个优先级都有对本地数据大小的限制,如果用户使用的范围超出了此限制,CPU将出现错误。以6ES7315-2AG10-0AB0为例,其每个优先级下的本地数据大小为512 BYTE。如下错误使用都可能导致此错误:
? OB1 调用FC1,FC1 中定义的local data(TEMP数据类型)与OB1中定义的local data(TEMP数据类型)总和超出了CPU 对此优先级分配的local data 数量。
? OB1 中嵌套调用多个FC, 这些FC 使用的local data 与OB1中定义的local data(TEMP数据类型)总和超过了分配给此优先级的local data 数量。
此时CPU将报16#3576错,如图5所示:
图5:分配本地数据错误
? 对于S7-400CPU, 用户可以在硬件配置中调节每个优先级下的本地数据大小,以6ES7412-2XG04-0AB0为例,如图6所示:
图6:分配本地数据
4. 当用户在使用嵌套功能出现错误时,对于支持OB88的CPU(例如S7-400CPU),可用通过下载OB88来防止CPU停机,此时CPU将处于SF状态,但OB88不可以再出现嵌套使用错误,否则CPU将进入停机状态。对于不支持OB88的CPU(例如S7-300CPU),当出现嵌套调用错误时,无法避免CPU进入停机状态。
描述
S7-PLCSIM 支持以下通讯块来实现两个S7-400 CPU模块间的通信:
- SFB8 "USEND"
- SFB9 "URCV"
- SFB12 "BSEND"
- SFB13 "BRCV"
- SFB15 "PUT"
- SFB14 "GET"
- SFB19 "START"
- SFB 20 "STOP"
- SFB 22 "STATUS"
- SFB 23 "USTATUS"
要求
- 需要S7-PLCSIM V5.4 SP3(或更高版本)。
- 在STEP 7(TIA Portal)中建立一个项目,对两个S7-400 CPU进行硬件组态和网络组态。
- 在模块之间已经组态了S7连接和通信连接。
- 在主动站S7-400 CPU的用户程序中,调用“BSEND”指令来给被动站CPU发送数据。
- 在被动站S7-400CPU中调用“BRCV”指令来接收来自主动站S7-400 CPU的数据。
注意
本条目提供的项目包含两个S7-400 CPU的组态和连接组态以及用户程序。
以下步骤列出了如何使用PLCSIM仿真通讯。下载附件中的STEP 7(TIA Portal)项目包含了两个S7-400站通过工业以太网通信 。
Station_1中的OB1包含计数器的程序,将其输出值传送到Station_2。
- 在项目导航中选中“Station_1”并打开S7-PLCSIM,可以通过菜单命令“Online > Simulation > Start”或者菜单栏的“Start simulation” 图标打开。实例编号为“S7-PLCSIM1”的*个仿真CPU的对话框被打开。
- 如果是*仿真这个项目,就会打开“Extended download to device”对话框。在“PG/PC Interface”中选择如图1所示的设置,并单击“Start search”。
图. 1
- 当在线连接已经建立时,单击“Load”按钮。
- 然后,在打开的“Load preview”对话框中,继续单击“Load”按钮。
- 在S7-PLCSIM 中使用“Add”菜单来加载子窗口“Input”和“Counter”,用来监视和控制程序。对于“Station_1”需要“EB2”和“Z1”。
- 在S7-PLCSIM1的“CPU”子窗口中,将运行模式从“STOP”切换到“RUN-P”。
图. 2
- 选中项目导航中的“Station_2”并重复步骤1来打开第二个“S7-PLCSIM2”实例。
- 在“Load preview”对话框中单击“Load”按钮。
- 与步骤5相同,给实例“S7-PLCSIM2”添加“Output”。对于“Station_2”需要“AW1”。
- 在S7-PLCSIM2中的“CPU”子窗口中,将运行模式从“STOP”切换到“RUN-P”。
图. 3
- 在S7-PLCSIM1(仿真Station 1)中,EB2控制计数器Z1并将计数值传送到S7-PLCSIM2 (仿真Station 2)中的AW1。
- E2.0: 自动向上计数的时钟标记
- E2.1:向上计数
- E2.2: 向下计数
- E2.3: 计数器的预设值
- E2.4: 复位计数器