供货周期 | 现货 | 规格 | KM200-12 |
---|---|---|---|
货号 | 凯鹰蓄电池 | 应用领域 | 医疗卫生,生物产业,地矿,电子/电池,道路/轨道/船舶 |
主要用途 | UPS电源、直流屏、配电柜、应急电源 |
产品分类品牌分类
-
Kaddiz蓄电池 STKPOWER蓄电池 凯鹰蓄电池 汤浅蓄电池 友联蓄电池 耐持蓄电池 风帆蓄电池 复华蓄电池 冠通蓄电池 ULTRACELL蓄电池 大华蓄电池 爱斯德蓄电池 日本NPC蓄电池 KMT蓄电池 ALLWAYS蓄电池 奥斯达蓄电池 科威达蓄电池 博牌蓄电池 OTP蓄电池 菲斯特蓄电池 施耐德蓄电池 赛力特蓄电池 凤凰蓄电池 克雷士蓄电池 戴思特DESTE蓄电池 力普蓄电池 太阳神蓄电池 京科蓄电池 稳定牌蓄电池 LIBOTEK蓄电池 ANJING蓄电池 CTP蓄电池 桑特蓄电池 AOPUERSEN蓄电池 九能蓄电池 美赛弗蓄电池 SUNSTK蓄电池 FENGSHENG蓄电池 LUOKI蓄电池 WANTE蓄电池 奥特多蓄电池 拉普特蓄电池 聚能蓄电池 环宇蓄电池 RGB蓄电池 康迪斯蓄电池 万松蓄电池 CTD蓄电池 淞森蓄电池 SAVTNK蓄电池 理士蓄电池 奥克蓄电池 CDP蓄电池 优比施蓄电池 KE蓄电池 大力神蓄电池 骆俊蓄电池 赛能蓄电池 ZHAOAN蓄电池 威博蓄电池 金兰盾蓄电池 DESTE蓄电池 诺华蓄电池 SUNEOM蓄电池 VAT蓄电池 Leert蓄电池 三瑞蓄电池 鸿贝蓄电池 欧姆斯蓄电池 蓄电池 BTB蓄电池 KEMA蓄电池 泰斯特蓄电池 科力达蓄电池 OTE蓄电池 强势蓄电池 其间蓄电池 STK蓄电池 新源蓄电池 双胜蓄电池 GEB蓄电池 电力士蓄电池 中达电通蓄电池 派士博电池 拓普沃蓄电池 莱力蓄电池 奥亚特蓄电池 KOKO蓄电池 银泰蓄电池 昕能蓄电池 匹西姆蓄电池 恒力蓄电池 嘉博特蓄电池 天畅蓄电池 叮东蓄电池 科电蓄电池 矩阵蓄电池 雷迪司蓄电池 利瑞特蓄电池 广隆蓄电池 OGB蓄电池 AOT蓄电池 欧帕瓦蓄电池 PNP蓄电池 贝利蓄电池 GMP蓄电池 金源星蓄电池 美阳蓄电池 SEALAKE蓄电池 圣润蓄电池 德利仕蓄电池 卓肯蓄电池 英瑞蓄电池 博尔特蓄电池 泰力达蓄电池 美洲豹蓄电池 NPC蓄电池 沃威达蓄电池 HOSSONI蓄电池 GOODEN蓄电池 宝星蓄电池 捷益达蓄电池 WTSIR蓄电池 商宇蓄电池 三科蓄电池 东洋蓄电池 SECURE蓄电池 三威蓄电池 蓝肯蓄电池 圣阳蓄电池 赛迪蓄电池 储霸蓄电池 金力神蓄电池 申盾蓄电池 山肯蓄电池 铭登蓄电池 阳光富力特蓄电池 博力特蓄电池 有利蓄电池 松下蓄电池 德洋蓄电池 日月明蓄电池 T-POWER蓄电池 KOZAR蓄电池 CRB蓄电池 宇力达蓄电池 宇泰蓄电池 CTM蓄电池 PEAK蓄电池 欧特保蓄电池 睿鑫蓄电池 BOLETAK蓄电池 森迪蓄电池 威扬蓄电池 艾佩斯蓄电池 TELONG蓄电池 RISSUN蓄电池 *蓄电池 万塔蓄电池 动力足蓄电池 汉韬蓄电池 安警蓄电池 乐珀尔蓄电池 九华蓄电池 天威蓄电池 持久动力蓄电池 吉辰蓄电池 万洋蓄电池 矿森蓄电池 通力源蓄电池 MOTOMA蓄电池 贝特蓄电池 希耐普蓄电池 驱动力蓄电池 捷隆蓄电池 金塔蓄电池 PSB蓄电池 威宝蓄电池 迈威蓄电池 普力达蓄电池 力得蓄电池 德富力蓄电池 越力蓄电池 力波特蓄电池 优特蓄电池 台诺蓄电池 科士达蓄电池 科华蓄电池 劲昊蓄电池 八马蓄电池 金悦城蓄电池 威马蓄电池 舶顿蓄电池 宝加利蓄电池 鸿宝蓄电池 J-POWER蓄电池 西力达蓄电池 普迪盾蓄电池 POWEROHS蓄电池 西力蓄电池 滨松蓄电池 KUKA Robot电池 海贝蓄电池 南都蓄电池 台洪蓄电池 DOYO蓄电池 BAYKEE蓄电池 圣普威蓄电池 索利特蓄电池 约顿蓄电池 DSTK蓄电池 WDS蓄电池 鑫星蓄电池 PT-9 C-PROOF信标蓄电池 AST蓄电池 力宝蓄电池 艾瑞斯蓄电池 TAICO蓄电池 YOUTOP蓄电池 USAOK蓄电池 日升蓄电池 贝朗斯蓄电池 双登蓄电池 安全(SECURE)蓄电池 恩科蓄电池 斯诺迪蓄电池 赛特蓄电池 G-BATT蓄电池 万特蓄电池 万安蓄电池 MSF蓄电池 北宁蓄电池 PEVOT蓄电池 万心蓄电池 FORBATT蓄电池 富山蓄电池 圣能蓄电池 光盛蓄电池 泽源蓄电池 昊能蓄电池 MAX蓄电池 HE蓄电池 HTB蓄电池 NCAA蓄电池 NPP耐普蓄电池 奔放/BOLDER蓄电池 汇众蓄电池
产品简介
详细介绍
凯鹰蓄电池KM200-12 12V200AH尺寸参考
凯鹰蓄电池KM200-12 12V200AH尺寸参考
目前在UPS不间断电源中,广泛使用密封式免维护蓄电池作为储存电能的装置。当市电中断时,UPS电源将靠储存在蓄电池中的能量维持其逆变器的正常工作。此时,蓄电池通过放电将化学能转化为电能提供给UPS电源使用。市场上被广泛使用的是密封免维护铅酸蓄电池,其价格比较昂贵,对于长延时UPS电源而言,蓄电池的成本比较可观。由此可见,正确地使用和维护好蓄电池组,尽可能地延长蓄电池的使用寿命非常重要,不可掉以轻心。如果维护使用正确的话,普及型蓄电池的寿命一般可达到3~5年,有些进口蓄电池的寿命可达到10年左右。
二、蓄电池设计使用寿命
蓄电池的设计使用寿命指的是一种特定条件下的理论值(比如要求环境温度为20~25℃,每个月的总放电量不超过额定的容量),而蓄电池实际寿命是与使用条件密切相关的,环境温度、放电深度和断电频度等因素都对蓄电池实际使用寿命有着不同程度甚至很严重的影响。
目前蓄电池使用较多的是2V系列和12V系列。这两种蓄电池的寿命差别较大,一般2V系列的寿命是8~15年,12V系列的设计寿命是3~6年。由于12V系列的蓄电池价格较便宜,目前在UPS系统中使用12V系列的蓄电池比例较高。
三、环境温度对蓄电池使用寿命的影响
假如,在25℃时蓄电池的容量为100﹪;在25℃以下时,每下降10℃蓄电池的容量会减少一半;在25℃以下时,温度与蓄电池容量的关系见表1所示。
从表1可以看出,蓄电池的容量是随着温度的变化而变化的,维护人员必须认真做到根据实际温度的变化合理地调整蓄电池的放电电流,同时要控制好蓄电池的温度使用其保持在22~25℃范围内。
高温使用环境是蓄电池的实际寿命不能达到设计寿命的最主要原因。蓄电池温度每升高10℃,恒定电压下的充电电流的接受量将增加一倍,蓄电池寿命就会受过度充电总累积电量增加的影响而缩短。高温时,浮充电流的增加加快了过充电量的积累,同时也加快了板栅腐蚀速度和气体的生成析出,从而缩短了蓄电池的寿命。经研究分析,蓄电池使用温度每升高10℃,在恒定的浮充电压下,蓄电池寿命会缩短50﹪。[1]
低温环境同样会对蓄电池产生有害影响。蓄电池负极活性物质为绒状铅粒,充放电过程中,铅的溶解和结晶在电板极反应过程中占主要地位。具有化学活性的硫酸铅是一种直径为10-5~10-3cm的斜方形晶粒,如在低温状态下放电,极易产生细微的晶粒,这种粒子排列过于紧密,孔隙少,构成细微致密的硫酸铅层,减小了充电过程电极反应面积,因此,在停电较为频繁的地区,蓄电池会产生充电不足现象,长期累积就可能导致负极板产生不可逆硫酸盐化。
为将温度对蓄电池寿命的影响减小到最低限度,一方面要求用户安装空调来改善蓄电池使用环境;另一方面建议选用温度适应性较广的蓄电池。
四、放电深度对蓄电池使用寿命的影响
放电深度是按实际放电容量与相同放电倍率情况下的额定放电量的比率来衡量的。放电深度越大,蓄电池寿命越短。过度放电对蓄电池的危害主要表现为:正极板活性物质软化松动,利用率下降;放电生成的硫酸铅在充电式不能复原,导致蓄电池容量下降。实际使用过程中,由于蓄电池提供负载的放电电流本来就小,反应生成物晶核生长速度慢、数量少,放电时生成粗大硫酸铅晶粒,充电式很难再硫酸溶液中溶解。
蓄电池的过放电会对蓄电池的使用寿命造成很大的影响,所以UPS系统的过放电保护功能也是其一项重要的指标,过放电控制功能可以对蓄电池进行过放电保护。即当UPS系统转为蓄电池放电供电时,在蓄电池电压低于设定的某一电压值后,切断耗电量较大的次要负载,以维持重要负载较长的工作时间;在低于过放电控制电压值后切断所以负载,保护蓄电池防止过放电。为了提高系统的可靠性,一般要求过放电控制电路具备软硬件双重保护。
五、充电电压对蓄电池使用寿命的影响
蓄电池的使用寿命与蓄电池的浮充电压有很大的关系,浮充电压过高,板栅腐蚀速度增加,电解液损失速度加快,蓄电池寿命缩短;浮充电压过低,容易造成蓄电池充电不足,影响蓄电池容量。蓄电池的浮充电压应随着温度变化而调整。温度升高,浮充电压应降低,如蓄电池浮充电压不变,则浮充电流将增加,正极极化增大,板栅腐蚀速度随之加快,蓄电池寿命就会缩短。温度降低,需要提高充电电压,否则会因低温而使得蓄电池充电接受能力下降,而导致蓄电池充电不足,蓄电池寿命同样会缩短。
为了延长蓄电池的使用寿命,应高度重视蓄电池的充放电控制。蓄电池的充电方式主要是浮充电和均衡充电两种。为了延长蓄电池的使用寿命,必须了解不同充电方式的充电特点和充电要求,严格按照要求对蓄电池进行充电。
一般蓄电池投入使用的日期距出厂日期时间较长,蓄电池经过长期的自放电,容量必然大量损失,并且由于单体蓄电池自放电大小的差异,致使蓄电池的比重、端电压等出现不均衡,投入使用前应用均充电压进行初充电,否则,个别蓄电池会进一步扩展成落后蓄电池并会导致整组蓄电池不可用。另外,如果蓄电池长期不投入使用,闲置时间超过3个月后,应该对蓄电池进行一次补充电。
根据《电信电源维护规程》规定,蓄电池遇到下列情况之一时,应进行均衡充电:
⑴2只以上单体蓄电池的浮充电压低于2.18V。
⑵放电深度超过20﹪。
⑶闲置不用的时间超过3个月。
⑷全浮充时间不超过3个月。
因此,为了延长蓄电池的使用寿命,要检测蓄电池放电情况,根据放电时间和放电电流积分计算放电容量,放电容量达到20﹪要能在监控设备上记录下来,并及时进行均充。同时在蓄电池监控设备上可以设置定期均充周期,一般推荐3个月。
六、充放电过程个别蓄电池端电压不*
有关的研究结果表明:板栅不同部位合金成分与结构的分布均有所不同,因而会导致板栅电化学性能的不均衡性,这种不均衡性又会使在浮充和充、放电状态下得电压产生差异,且会随着充、放电的循环往复,使用这种差异不断增大,形成所谓的“落后蓄电池(蓄电池失效)”。目前国内的标准要求,在一组蓄电池中最大浮充电压的差异应≤50mV,所以应重视并减小浮充状态下蓄电池的电压运行的差异。[2]
蓄电池组每只蓄电池端电压的*性对整组蓄电池的性能有着直接的影响,由12V蓄电池组成的蓄电池组,各个蓄电池的开路电压值与最低值之差为≤60mV,浮充电压值与最低值之差为≤300mV。当蓄电池处于浮充状态下时,若个别蓄电池电压15.0V,蓄电池内部则存在开路的可能。因此,应加强对蓄电池的日常维护,一旦发现蓄电池电压异常,应及时财采取措施处理,如均衡充电或更换蓄电池。