上海申思特自动化设备有限公司

主营产品: 美国E E传感器,美国E E减压阀,意大利ATOS阿托斯油缸,丹麦GRAS麦克风,丹麦GRAS人工头, ASCO电磁阀,IFM易福门传感器

10

联系电话

19121166298

您现在的位置: 首页> 公司动态> MN23739美国MAXON火花塞上海分公司

美国Fairchild仙童

美国E+E

美国WILKERSON威尔克森

美国G+F

德国MAHLE马勒

德国Kubler库伯勒

意大利UNIVER

意大利CAMOZZI康茂胜

意大利ATOS阿托斯

意大利OMAL欧玛尔

英国NORGREN海隆诺冠

美国ROSS

美国VICKERS威格士

美国PARKER派克

美国NUMATICS纽曼蒂克

美国MAC电磁阀

美国ASCO阿斯卡

美国VERSA

德国EPRO艾默生

德国SAMSON萨姆森

德国施迈赛SCHMERSAL

德国MURR穆尔

德国Hengstler亨士乐

德国Hirschmann赫斯曼

德国Turck图尔

德国SICK施克

德国HEIDENHAIN海德汉

德国E+H恩德斯豪斯

德国PILZ皮尔兹

德国HYDAC贺德克

德国REXROTH力士乐

德国HAWE哈威

德国P+F倍加福

德国DEMAG德马格

德国IFM易福门

德国FESTO费斯托

德国宝德BURKERT

德国伯恩斯坦

AI-TEK阿泰克

美国太阳SUN

美国米顿罗MILTONROY

宝德

意尔创ELTRA编码器

意大利杰弗伦

德国马勒

德国安士能

美国BANNER邦纳

美国BARKSDALE巴士德

德国GEMU盖米

意大利ELTRA意尔创

德国SCHMERSAL施迈赛

德国STAUFF西德福

瑞士BAUMER堡盟

法国CROUZET高诺斯

德国HERION海隆

德国TR帝尔

德国Schonbuch讯巴赫

意大利DUPLOMATIC迪普马

德国SCHUNK雄克

德国BAUSER宝色

瑞士SWAN天鹅

美国CRYDOM快达

德国LEM莱姆传感器

德国LAYHER

美国GAST嘉仕达

德国亨士乐

德国gsr

德国德尔格

德国盖米

德国蒂芬巴赫TIEFENBACH

公司信息

人:
周经理
话:
021-13321956356
机:
19121166298
真:
址:
上海市黄浦区北京东路668号科技京城东楼27楼C1室
编:
化:
www.wister8-china.com
址:
铺:
https://www.chem17.com/st338048/
给他留言

MN23739美国MAXON火花塞上海分公司

2018-1-5  阅读(1270)

MN23739美国MAXON火花塞上海分公司


 

MAXON燃烧机提供烘炉用燃烧器、高温应用燃烧器、焚烧炉、纯氧燃烧器、线型火焰燃烧器、浸渍管燃烧器、控制阀门、关断阀、放散阀、控制柜、管路系统、附件和燃烧设备的组装等。
麦克森燃烧设备和阀门广泛使用于各种工业领域,如:食品加工行业(包括烘干、发芽、肉食品加工、发酵酿酒等)、工业(包括铝制品、冶炼、玻璃、石
型号较多,
油化工、炼油、建筑材料、集装箱、塑料、汽车、纺织等)、造纸业(印刷、纸品)和废弃废物焚烧炉等诸多行业。
供应美国麦克森燃烧机点火电极、感应棒、燃烧机火花塞。
 
热值
火花塞作为发动机点火系统的终端部件,起着至关重要的作用。而火花塞热值是指火花塞受热和散热能力的一个指标,其自身所受热量的散发量称为热值。
火花塞热值
MAXON火花塞热值包括1~9九个数字,其中1--3为低热值,4--6为中热值,7--9为高热值。原厂的备件火花塞热值一般有5、6、7三种,能够大量散热的称为冷型火花塞,也就是高热值火花塞,冷型火花塞(高热值)的绝缘体裙部相对较短,由于散热途径比较短,散热相对较多,所以不易造成中心电极温度的上升。相对散热量较小的叫做热型火花塞,也就是低热值火花塞。
热型火花塞(低热值)的绝缘体裙部较长,当汽缸内温度布置均匀时,裙部越长,受热面积就越大,传导热量的距离就越长,所以散热少,中心电极温度上升较高。一般来说低热值的火花塞更适用于低速低压缩比的小功率发动机,而高热值火花塞则适用于高速高压缩比的大功率发动机。这个数值越大,也就越“冷”,这个数值越小,火花塞的散热就越小,也就越“热”,热值的高低,取决于缸内混合气温度和火花塞的设计。


MAXON火花塞是属于“冷型”还是“热型”直接决定了它自身的散热能力,也就是说,火花塞的原厂热值直接决定了它的工作环境温度。
对于火花塞的工作环境温度要求是非常高的,火花塞的散热既不能太大,也不能太小,要确保火花塞的工作温度,就必须与原厂热值相匹配。一般情况下上下落差控制在1个之内,如果落差过大,轻则影响发动机功率输出,重则导致火花塞损坏,进而损坏发动机。
很多人知道换装火花塞的时候火花塞的热值不能低于原厂热值,却认为高于原厂热值问题不大,其实这也是不对的。换装火花塞时,不要过于追求高价格高热值的火花塞,应该参照原厂热值这个关键因素来进行匹配,否则易对发动机性能造成很大影响。
特性
MAXON火花塞的标准中通常用热值来表征火花塞的热特性,火花塞热值表示火花塞绝缘体裙部吸热与散热的平衡能力,热值越高。则吸热与散热平衡能力越强,因而热型火花塞热值低,冷型火花塞热值高。一般功率高、压缩比大的发动机选用热值高的冷型火花塞;相反,功率低、压缩比小的发动机选用热值低的热型火花塞。一般火花塞的选用是工厂通过产品定型实验确定的,不应随意更换。
发展改进
随着汽车工业的发展,火花塞的性能也在不断改进,借以提高汽油机的工作质量,例如为改善排气净化效果,采用了宽间隙火花塞(间隙为1.0~1.2mm);为限制汽车电波的噪声,研制了防干扰火花塞等。以往,火花塞的使用寿命很短,汽车厂家规定,汽车在行驶3 000km后(或6个月)必须检查或更换火花塞。随着火花塞和有关点火装置的改进,再加上排气净化的一些措施,使火花塞的使用寿命大幅度提高。一般规定汽车在行驶10 000km之后(或每1年),必须检查或更换火花塞。白金电极的火花塞使用寿命更长,一般在汽车行驶100 000km之内无须检查更换。
工作原理
MAXON火花塞的电板经由反复持续的发电点火,点燃汽缸内的混合气,
火花塞
此时,点火系统的其它部分则产生正时的高压电脉冲,形成火花并产生爆炸提供引擎动力输出所需的能源。
而火花塞的构造是以一根细长的金属电板穿过一个具有绝缘功能的陶瓷材质而制成,绝缘体的下部周围有一个金属材质的壳,以螺牙方式旋紧在汽缸盖上,在这个金属壳的底部在加焊一电极与汽车车体形成接地作用。另外,在此电极中央的末端,必须再以一个微小的放电间隙分隔开来。
接着,从分电器来的高压电流会经过这个中央电极导电,然后在底端的放电间隙放电,这时火花塞发挥功用产生火花燃烧混合气,引擎就得到能源并输出功率。
由此可见,MAXON火花塞是将进入发动机燃烧的汽油和空气混合气体加以点燃的装置,工作于高温、高压的恶劣条件下,是汽油发动机的易损件之一,它在发动机的运转中扮演着相当重要的角色,与汽车省油与否,运转是否平稳,都有很大关系。
结构介绍
基本结构
绝缘体必须具有良好的绝缘性和导热性、较高的机械强度,能耐受高温热冲击和化学腐蚀,。壳体是钢制件。壳体六角螺纹的尺寸已纳入ISO标准。火花塞电极包括中心电极和侧电极,两者之间为火花间隙。间隙的大小直接影响着发动机的启动、功率、工作稳定性和经济性。合理的间隙与点火电压有关。电极材料必须具有良好的抗电蚀(火花烧蚀)和腐蚀(化学—热腐蚀)能力,并应具有良好的导热性。中心电极与接线螺杆之间是导体玻璃密封剂,既要能够导电,也要能承受混合气燃烧的高压,同时保证其密封性。
结构变形
由于火花塞与发动机之间的相互关系,使日新月异的发动机技术必然要促进火花塞的不断创新。
MAXON火花塞
通过历史的发展与进步,可以看到火花塞结构的演化与变迁。
1、标准型与突出型火花塞
标准型火花塞是绝缘体裙部端略低于壳体螺纹端面的单侧电极火花塞,它采用了侧置气门式发动机应用zui广泛的传统发火端结构。为区别于后来出现的“突出型”,此结构被称为“标准型”。
突出型火花塞zui初是为顶置气门式发动机配套设计的,它的绝缘体裙部突出壳体螺纹端面伸入燃烧室内。在燃烧的混合气中吸收较多热量,怠速时有较高的工作温度,避免污损;高速时由于气门顶置,吸入的气流对准绝缘体裙部,将其冷却,使zui高温度提高不多,因而热范围较大。突出型火花塞不适用于侧置气门式发动机,因其进气道拐弯多,气流对绝缘体裙部冷却作用不大。
MAXON火花塞
从点火效果考虑,电火花应该在混合气流动的地方跳过。发动机燃烧室不同的结构设计要求不同的*点火位置。点火位置可以理解为火花间隙在燃烧室内的位置,即火花塞中心电面至壳体端面的距离。
普通突出型火花塞的点火位置为3mm,越野赛车和大排量摩托车使用的“超突出型”火花塞,点火位置可达7~10mm。点火靠近燃烧室中心部位,火焰传播距离缩短,从而将缩短燃烧周期并减小压力变化的幅度,有利于提高发动机的动力性。
2、单侧极与多侧极火花塞
传统单侧极火花塞有一个明显的缺陷,即侧电极盖住了中心电极。当两极间高压放电时,火花间隙处的混合气将吸收火花热量并因电离被激活而形成“火核”。火核形成的场所一般在接近侧电极处,热量将较多地被侧电极吸收,即电极的“消焰作用”,它减少了火花能量,
火花塞机构图
降低了跳火性能。
于是,在上世纪20年代,出现了三侧极火花塞。与单侧极相比,多侧极的火花间隙由多个侧电极的断面(冲成圆孔)和中心电极的圆柱面构成,这种旁置式的火花间隙消除了侧电极盖住中心电极的缺点,增加了火花的“可达性”,火花能量较大,较容易深入汽缸内部,有助于改善混合气燃烧状况并减少废气排放。由于多侧极提供了多个跳火通道,因而延长了使用寿命,提高了点火的可靠性。这里必须指出,放电的瞬间只能是一条通道跳火,不可能多侧极同时跳火。高速摄影的放电过程证明了这一点。
火花塞型号中的后缀字母(热值数后面的字母)D、J、Q分别表示双侧极、三侧极、四侧极。
3、镍基合金与铜芯电极火花塞
对伸入燃烧室电极的zui基本要求是耐烧蚀(电蚀和化学腐蚀)和良好的导热性。
火花塞
随着材料科学和工艺技术的发展,电极材料经历了铁、镍、镍基合金、镍-铜复合材料、贵金属的演化过程。现在用得zui普遍的是镍基合金。通常,纯金属的导热性优于合金,但纯金属(例如镍)对燃烧气体及其形成的固状沉积物的化学腐蚀反应比合金灵敏。因此电极材料采用镍基加入铬、锰、硅等元素,铬提高抗电蚀能力,锰和硅提高耐化学腐蚀能力,特别是对危害性很大的氧化硫的抗腐蚀能力。镍基合金的导热性不如铜,采用铜芯并将其外表裹以镍基合金(或其他贵金属合金)将大大改善电极的导热能力。
国产火花塞型号后缀中的C代表铜芯中心电极,CC代表双铜芯电极。
4、普通型与电阻型火花塞
MAXON火花塞作为火花放电发生器,是一种宽带连续型的电磁辐射干扰源。为了抑制因跳火产生的电磁辐射对无线电场的强干扰,保护无线电通讯并防止车载电子装置的误动作,世界各国自上世纪60年代以来,加快了电阻型火花塞的开发。我国也发布了一系列强制性电磁兼容的国家标准,对于火花塞点火发动机驱动的车辆装置无线电干扰特性作了严格的限制,因此对电阻型火花塞的需求也大为增加。电阻型火花塞在结构上与普通型没有大的区别,仅仅是将绝缘体内的导体密封剂改为电阻密封剂。
5、空气间隙与沿面间隙火花塞
迄今为止,火花塞跳火主要有两种方式:一种是脉冲高电压作用下,
火花塞
击穿存在于中心电极与侧电极之间的空气间隙产生电火花;另一种是沿面跳火,即放电路线是沿中心电极与侧电极之间的绝缘体表面进行的。前者放电距离短,跳火性能差,传统单侧极火花塞尤甚。因为空气间隙的大小受电源电压的制约,一般为0.6~0.9mm左右。较短的放电距离使火核没有充分的“发育”,热量也较多地被侧电极吸收,降低了火花的能量。若加大空气间隙,则需要提高点火电压,易导致“失火”。沿面放电发生于绝缘体陶瓷表面和空气的交界面,陶瓷表面电场发生畸变会增大局部场强,导致局部先发生放电,由此促使放电的进一步发展,直至电极间隙击穿。这种放电机理使沿面间隙比同宽度空气间隙的击穿电压降低。若在相同击穿电压下,沿面间隙比空气间隙的放电距离长。较长的放电距离能大大提高火花的能量。因为火花放电是由能量密度非常不一样的2部分组成,即电容放电部分和电感放电部分。前者具有高能密度,电压高,能在极短时间内放出;后者能量密度小,但在较长时间起作用。从电火花能量分布可看出电感部分的能量是电容部分的20~30倍,是名副其实的“热焰”,对加热周围混合气而形成火核起主要作用。电感部分持续时间越长,着火性越好。加长放电距离将降低侧电极的“消焰作用”。电火花沿绝缘体表面烧尽油污积炭,避免电极之间的跨连,也避免绝缘体和壳体之间因附着燃烧沉积物导致电流泄漏的现象,保证怠速工况下的点火可靠性。沿面间隙型火花塞的绝缘体没有裙部,不能迅速吸收燃烧室的热量,是一种极冷型火花塞。用途较广的是将“沿面间隙”和“空气间隙”结合在一起的“滑动—空气间隙”,绝缘体裙部与侧电极之间是空气间隙。跳火时火花从绝缘体表面“滑”过再跳向侧电极。由于绝缘体表面电场畸变使击穿电压降低。这种火花塞的绝缘体有正常的裙部,因而能适应不同的热负荷。
6、平座型与锥座型火花塞
所谓平座型,即火花塞安装座(壳体大圆柱端面)为平面,安装时该平面与汽缸之间有弹性密封垫圈。某些发动机为了更紧凑或布置更多的零件(如增加气门),没有给火花塞留下较大的安装空间,这就迫使火花塞缩小径向尺寸,甚至取消外密封垫圈,用“锥座”代替了“平座”。
7、贵金属火花塞
采用镍基合金电极的普通火花塞已越来越不适应大功率、
火花塞
高转速、大压缩比的现代发动机的需要。为了使火花塞具有更高的点火性能和使用寿命,人们开始瞄准贵金属(铂、铱、钇等),将其用于电极并相应改进发火端的结构。贵金属具有*的熔点,铂金熔点2042K、铱金2716K。加进某些元素(如铑、钯)后,具有*的抗化学腐蚀的能力。将其制成细电极(直径0.2mm),直接烧结于绝缘体发火端中,或以直径为0.4~0.8mm的圆片用激光焊接于中心电极前端和侧电极的工作面。这种电有强烈的放电效应,在电压相对较低时也能点火,其火花间隙可加大至1.1~1.5mm。贵金属使火花塞的性能发生了质的变化:一是电极的高抗蚀性能够保持火花间隙长期不变(在16万km试验中,铂电极火花间隙仅增大0.05mm),使点火电压值稳定,发动机工作平稳。火花塞使用过程中无需调整修正火花间隙。二是适宜于冷态启动。由于放电,点火容易,提高了发动机低速工况下的性能。三是减少电极的吸热和消焰作用,增强火花能量。细小的电极使间隙周围的空间扩大,增加了混合气的可达性,使燃烧更充分,排放更低。

PHD              H532X50-Q6AE-M-J8
AUTOMTION   517447序列号519107
ASTRO TOOL CORP  621205
NUMATICS            S2AM-03I1C-AAA0
NUMATICS               P22B-03HM
FAIRCHILD          10222
FAIRCHILD           10262BPJ
FLOW SAFE          F84-4
JOHNSON           P77AAA-9300
FLODRI               M25V
VALCOR              SV955G56HCO  24DC
SEL                     751A
MAXON             23739
autolite              3136
SPECO                HT7246T
VICI                    HP2220
WAUKEE             D/GKIT1000/2500
AATCC                28359A
DIGICON             DS6RG6
MIGHTY               S19125Y
MAPAL                 KS05-07
MAPAL                 KS63-08
MCMASTER-CARR    4456K13



产品对比 产品对比 二维码 在线交流

扫一扫访问手机商铺

对比框

在线留言