详细介绍
Organ-on-a-Chip片上器官组织内皮屏障
说明
这种芯片的设计可以模拟1)三维组织和内皮屏障的形成,2)它们的交互作用。该装置包括狭缝或间隙,以形成外部通道和内部腔室之间的交叉点。通过这种方式,有可能重建对可靠组织模型(如血脑屏障和其他内皮/组织界面)至关重要的紧密和间隙连接。
重建三维组织模型的可能性通过提供更准确地描述体内真实情况的生物和形态学微环境以及确保方便的实时可视化,加速了细胞行为和药物筛选的实时研究。
通道尺寸、组织腔尺寸、支架和屏障设计有多种选择(见规范)。我们可以支持您的选择,并根据您的需要选择正确的参数。
这种智能和创新的设计克服了当前流动室或基于跨井室的分析固有的局限性。目前的流动腔设计过于简单化,描绘了微环境的尺度和几何结构,无法对轮回进行建模。同样,在活体内观察到的流体剪切和尺寸/拓扑结构也不在井腔中,迁移的终点测量不可重复,也不能提供实时可视化。
这种简化和理想化的微血管网络很容易再现细胞分层、恒定剪切和流动条件。
好处:
并行架构实现了定量实时可视化
具有工程多孔结构的生理性渗漏血管
物理上真实的对流和扩散输运
超低消耗量微氟平台
高抗光透明材料
默认显微镜玻片尺寸
选项(请参阅“规格”选项卡中的可用设计和选项详细信息):
设计1
方案A
1)100m狭缝间距-2m宽狭缝-50m屏障宽度
2)50 m狭缝间距-3 m宽狭缝-50 m屏障宽度
3)50 m狭缝间距-3 m宽狭缝-100 m屏障宽度
4)50 m狭缝间距-2 m宽狭缝-50 m屏障宽度
5)50 m狭缝间距-2 m宽狭缝-100 m屏障宽度
方案B
1)3米柱直径-3米间隙-100米屏障宽度
2)3 m柱直径-8 m间隙-50 m屏障宽度
3)3 m支柱直径-3 m间隙-50 m屏障宽度
4)3 m柱直径-8 m间隙-100 m屏障宽度
5)8m支柱直径-3m间隙-100m屏障宽度
6)8 m m柱直径-8 mm间隙-50 mm屏障宽度
设计2
方案A
1)50 m狭缝间距-2 m宽狭缝-100 m屏障宽度
方案B
1)3m支柱间隙
2)8m矿柱间隙
Organ-on-a-Chip片上器官组织内皮屏障
Description
The design of this chip allows to mimic 1) the formation of 3D tissues and endothelial barrier and 2) their cross-talk interactions. The device includes slits or gaps to form the intersection between the outer channel and inner chamber. In this way it is possible to recreate tight and gap junctions essential for a reliable tissue modelling (such as the blood-brain barrier and other endothelial/tissue interfaces).
The possibility to recreate 3D tissue models accelerates real-time studies of cellular behavior and drug screening by providing a biological and morphological microenvironment that more accurately depicts in vivo reality and ensuring a convenient real-time visualization.
Several options for channel size, tissue chamber size, scaffolding and barrier design are available (see the Specifications). We can support you in your choice and select the right parameters by following your needs.
This smart and innovative design overcomes the current limitations inherent in flow chambers or Transwell chamber based assays. Current flow chamber designs are oversimplified, lack the scale and geometry of the microenvironment and cannot model transmigration. Similarly, Transwell chambers do not account for fluid shear and size/topology observed in vivo, the end point measurements of migration are not reproducible and do not provide real-time visualization.
This simplified and idealized microvascular network easily reproduce the cellular stratification, constant shear and flow conditions.
Benefits:
- Side by side architecture enables quantitative real time visualization
- Physiological leaky vasculature with engineered porous structures
- Physiologically realistic convective and diffusive transport
- Microfluidic platform with ultra-low consumable volumes
- Highly-resistant and optically clear material
- Standard microscope glass slide size
Options (see available designs and options details in the "Specifications" tab):
- Design 1
- Option A
- 1) 100µm slit spacing - 2µm wide slit - 50µm barrier width
- 2) 50µm slit spacing - 3µm wide slit - 50µm barrier width
- 3) 50µm slit spacing - 3µm wide slit - 100µm barrier width
- 4) 50µm slit spacing - 2µm wide slit - 50µm barrier width
- 5) 50µm slit spacing - 2µm wide slit - 100µm barrier width
- Option B
- 1) 3µm pillar diameter - 3µm gap - 100µm barrier width
- 2) 3µm pillar diameter - 8µm gap - 50µm barrier width
- 3) 3µm pillar diameter - 3µm gap - 50µm barrier width
- 4) 3µm pillar diameter - 8µm gap - 100µm barrier width
- 5) 8µm pillar diameter - 3µm gap - 100µm barrier width
- 6) 8µm pillar diameter - 8µm gap - 50µm barrier width
- Option A
- Design 2
- Option A
- 1) 50µm slit spacing - 2µm wide slit - 100µm barrier width
- Option B
- 1) 3µm pillar gap
- 2) 8µm pillar gap
- Option A