官方微信|手机版

产品展厅

产品求购企业资讯会展

发布询价单

化工仪器网>产品展厅>测量/计量仪器>其它测量/计量仪器>时间频率计量仪器>HR-901B 北斗时钟-时间同步服务器

分享
举报 评价

HR-901B 北斗时钟-时间同步服务器

参考价 ¥ 12 ¥ 11
订货量 1-2 ≥3
具体成交价以合同协议为准

联系我们时请说明是化工仪器网上看到的信息,谢谢!


安徽京准电钟电子科技有限公司是一家快速成长的科技类技术企业,一直致力于高精度卫星授时产品的研发、生产、销售及服务。

公司坚持以技术创新为基础,运用多年来在卫星授时行业实践成果、经验积累并结合国内外卫星授时领域的新技术,形成了为用户提供从硬件到软件一系列精美而完整的解决方案。

公司主营产品:卫星授时服务器、卫星时钟服务器、NTP网络时间服务器、GPS北斗双模卫星同步时钟、电力时间同步系统、卫星对时装置、网络子母钟系统、PTP(1588)精密时钟、PCI时间同步卡等。

公司产品广泛应用于安防、医疗、通信、电力、教育、交通等行业系统,依据公司在网络时间同步行业的强大研发能力,使公司的产品不断的更新,始终处于行业XIAN先地位。产品种类齐全,性价比高,在应用环境中得到了客户良好赞许。 

公司在积极经营的同时,努力探索企业文化的内涵,努力实现与客户、与员工、与社会、与合作伙伴、与竞争对手的多角度、多层面的双赢。倡导“诚信、负责、创新、合作”的企业准则。形成“以人为本、精益求精”为企业理念,“时间服务、与您同步”为企业口号,以科技求发展、以质量求效益,为客户提供高品质服务!

时间同步系统,子母钟系统,gps卫星同步时钟,ntp网络时间服务器

产地类别 国产 应用领域 医疗卫生,环保,石油,电子,交通

北斗时钟-时间同步服务器

北斗时钟-时间同步服务器

GPS向范围内提供定时和定位功能。任何地点的GPS用户通过低成本的GPS接收机接受卫星发出的信号,就能获取准确的空间位置信息、同步时标及标准时间。GPS要实时完成定位和授时功能,需要4个参数:经度、纬度、高度和用户时钟与GPS主钟标准时间的时刻偏差,所以需要接受4颗卫星的位置。若用户已知自己的确切位置,那么接受1颗卫星的数据也可以完成定时。
由于GPS采用被动的定位原理,所以星载高稳定度的频率标准是精密定位和授时的关键。工作卫星上一般采用的是铯原子钟作为频标,其频率稳定度达到(1~2)×10-13/d。GPS卫星上的卫星钟通过和地面的GPS主钟标准时间进行比对,这样就可以使卫星钟与GPS主钟标准时间之间保持精确同步。GPS卫星发射的几种不同频率的信号,都是来自卫星上同一个基准频率。GPS接收机对GPS卫星发射的信号进行处理,经过一套严密的误差校正,使输出的信号达到很高的*稳定性。定时精度能够达到300 ns以内。在精确定位服务下,GPS提供的时间信号与协调世界时(UTC)之差小于100 ns。若采用差分GPS技术,则与UTC之差能达到几个纳秒。
GPS定时原理是基于在用户端精确测定和扣除GPS时间信号的传输时延,以达到对本地钟的定时与校准。GPS定时准确度取决于信号发射端、信号在传输过程中和接收端所引入的误差。主要误差有:
2.1.1信号发射端:卫星钟误差、卫星星历(位置)误差;
2.1.2信号传输过程:电离层误差、对流层误差、地面反射多路径误差;
2.1.3接收端:接收机时延误差、接收机坐标误差、接收机噪声误差。
2.2 GPS时钟的实现方法
常规时钟频率产生方法可以是晶体、铷钟等。但晶体会老化,易受外界环境变化影响和*的精度漂移影响。原子钟*使用后也会产生偏差,需要定时校准。而GPS系统由于其工作特性的需要,定期对自身时钟系统进行修正,所以其自身时钟系统*稳定,具有对外界物理因素变化不敏感特性。若晶体或铷钟以GPS为*参考,可以变成低成本、高性能的基准时钟。
在网络正常工作状态下,GPS时钟具有与GPS主钟相同的频率准确度。由于在某些特殊情况下GPS时钟信号会暂时消失,所以基于GPS的时钟模块一般需要另一个外部时钟作为后备输入,预留有外接时钟的时基和频标信号接口。另外,GPS时钟其频率准确度还具有自身保持性能。GPS时间的建立过程如图1所示。 
为了得到精密的GPS时间,使它的准确度相对于UTC达到<100ns,因此每个GPS卫星上都装有铯原子钟作星载钟;GPS全部卫星与地面测控站构成一个闭环的自动修正系统;采用UTC(USNO/MC)为参考基准。
GPS时钟频率模块提供所需的各种时频的信号,并输出定位时间、GPS接收机是否工作正常、输出的时间信号是否有效、时钟和频率处理模块激活状态、异常告警等信息。
3.改造后的系统逻辑结构
在原来主站系统基础上,增加一套GPS同步时钟系统和一个室外卫星接收天线。接收到的卫星定位信号通过同轴电缆连接到同步时钟处理系统的天线输入端口,再由时钟装置输出一路RS232信号,接入双机监视及切换装置(CMS)上。两台主机与CMS相连,主机按与同步时钟装置相匹配的规约,实现准确无误的接收GPS信号,实现时间的高精度同步。主机接收GPS时钟信号作为系统的标准时间,对系统进 行时钟同步,周期性地向RTU发送校时命令,以同步RTU时钟。
4.时间同步原理
GPS接收机输出两种时间信号:一是同步脉冲信号,包括间隔为1秒的脉冲信号1PPS(它与UTC的同步误差不超过1μs)、间隔为1分的脉动信号1PPM和间隔为1小时的脉动信号1PPH;二是时间码信号。通过RS232C接口,输出与1PPS脉冲前沿对应的标准时间和日期,即1PPS的时间标记。其中,时间码信号用于系统时间同步,同步脉冲信号用子装置时钟同步。根据系统对任务或事件实时性要求的程度,可在整点、整分甚至整秒时刻通过串行接口为系统提供标准时间码信号。同样,根据采样对装置时钟分辨率的要求,可分别采用1PPS、1PPM或1PPH同步脉冲信号对装置时钟进行同步。
系统时间同步是指GPS时间码周期性地设置整个系统中各节点主机及RTU的系统时间,达到统一分布式系统时间的目的。SCADA系统中各主机及RTU的对时系统都以三级计时结构方式组成,即RTC计时、BIOS计时和OS计时。相应地用外部标准时间同步一台主机的时间系统也可分为同步RTC时钟、同步BIOS时钟和同步OS时钟3种方式。但采用前两者均要设计硬件线路,这对主机的完整性和可靠性不利,且同步RTC时钟只对初始开机有效。所有应用程序的计时都只取自于OS时钟(不包括低级程序对系统时钟的直接调用)。所以,只要对OS时钟进行同步,就可实现对所有应用程序的时间同步但由于同步时刻点之后OS计时仍然依赖低一级的BIOS时钟计时,为消减累计误差,必须周期性同步。
本系统的应用设计方案,并不将GPS时间码直接传送给每一个节点和RTU,而是先传送给主机,再主机传送给其它主机节点。这样既可以简化线路,又便于整个系统的时间统一。
系统时间同步的基本过程是:(1)整点时刻与UTC 1PPS脉冲前沿对应的BCD时间码信号到后,启动主机时间同步处理后台进程;(2)后台进程接收BCD时间码,将其转换为以秒为单位的长整型数,设置主机系统时钟,并采用紧缩传递方法将长整型数转换为ASCⅡ流,通过数据报Socket向其他主机节点广播;(3)其他主机节点接收ASCⅡ流,将其还原为长整型数,设置本机系统时间。

-时间同步服务器

GPS向范围内提供定时和定位功能。任何地点的GPS用户通过低成本的GPS接收机接受卫星发出的信号,就能获取准确的空间位置信息、同步时标及标准时间。GPS要实时完成定位和授时功能,需要4个参数:经度、纬度、高度和用户时钟与GPS主钟标准时间的时刻偏差,所以需要接受4颗卫星的位置。若用户已知自己的确切位置,那么接受1颗卫星的数据也可以完成定时。
由于GPS采用被动的定位原理,所以星载高稳定度的频率标准是精密定位和授时的关键。工作卫星上一般采用的是铯原子钟作为频标,其频率稳定度达到(1~2)×10-13/d。GPS卫星上的卫星钟通过和地面的GPS主钟标准时间进行比对,这样就可以使卫星钟与GPS主钟标准时间之间保持精确同步。GPS卫星发射的几种不同频率的信号,都是来自卫星上同一个基准频率。GPS接收机对GPS卫星发射的信号进行处理,经过一套严密的误差校正,使输出的信号达到很高的*稳定性。定时精度能够达到300 ns以内。在精确定位服务下,GPS提供的时间信号与协调世界时(UTC)之差小于100 ns。若采用差分GPS技术,则与UTC之差能达到几个纳秒。
GPS定时原理是基于在用户端精确测定和扣除GPS时间信号的传输时延,以达到对本地钟的定时与校准。GPS定时准确度取决于信号发射端、信号在传输过程中和接收端所引入的误差。主要误差有:
2.1.1信号发射端:卫星钟误差、卫星星历(位置)误差;
2.1.2信号传输过程:电离层误差、对流层误差、地面反射多路径误差;
2.1.3接收端:接收机时延误差、接收机坐标误差、接收机噪声误差。
2.2 GPS时钟的实现方法
常规时钟频率产生方法可以是晶体、铷钟等。但晶体会老化,易受外界环境变化影响和*的精度漂移影响。原子钟*使用后也会产生偏差,需要定时校准。而GPS系统由于其工作特性的需要,定期对自身时钟系统进行修正,所以其自身时钟系统*稳定,具有对外界物理因素变化不敏感特性。若晶体或铷钟以GPS为*参考,可以变成低成本、高性能的基准时钟。
在网络正常工作状态下,GPS时钟具有与GPS主钟相同的频率准确度。由于在某些特殊情况下GPS时钟信号会暂时消失,所以基于GPS的时钟模块一般需要另一个外部时钟作为后备输入,预留有外接时钟的时基和频标信号接口。另外,GPS时钟其频率准确度还具有自身保持性能。GPS时间的建立过程如图1所示。 
为了得到精密的GPS时间,使它的准确度相对于UTC达到<100ns,因此每个GPS卫星上都装有铯原子钟作星载钟;GPS全部卫星与地面测控站构成一个闭环的自动修正系统;采用UTC(USNO/MC)为参考基准。
GPS时钟频率模块提供所需的各种时频的信号,并输出定位时间、GPS接收机是否工作正常、输出的时间信号是否有效、时钟和频率处理模块激活状态、异常告警等信息。
3.改造后的系统逻辑结构
在原来主站系统基础上,增加一套GPS同步时钟系统和一个室外卫星接收天线。接收到的卫星定位信号通过同轴电缆连接到同步时钟处理系统的天线输入端口,再由时钟装置输出一路RS232信号,接入双机监视及切换装置(CMS)上。两台主机与CMS相连,主机按与同步时钟装置相匹配的规约,实现准确无误的接收GPS信号,实现时间的高精度同步。主机接收GPS时钟信号作为系统的标准时间,对系统进 行时钟同步,周期性地向RTU发送校时命令,以同步RTU时钟。
4.时间同步原理
GPS接收机输出两种时间信号:一是同步脉冲信号,包括间隔为1秒的脉冲信号1PPS(它与UTC的同步误差不超过1μs)、间隔为1分的脉动信号1PPM和间隔为1小时的脉动信号1PPH;二是时间码信号。通过RS232C接口,输出与1PPS脉冲前沿对应的标准时间和日期,即1PPS的时间标记。其中,时间码信号用于系统时间同步,同步脉冲信号用子装置时钟同步。根据系统对任务或事件实时性要求的程度,可在整点、整分甚至整秒时刻通过串行接口为系统提供标准时间码信号。同样,根据采样对装置时钟分辨率的要求,可分别采用1PPS、1PPM或1PPH同步脉冲信号对装置时钟进行同步。
系统时间同步是指GPS时间码周期性地设置整个系统中各节点主机及RTU的系统时间,达到统一分布式系统时间的目的。SCADA系统中各主机及RTU的对时系统都以三级计时结构方式组成,即RTC计时、BIOS计时和OS计时。相应地用外部标准时间同步一台主机的时间系统也可分为同步RTC时钟、同步BIOS时钟和同步OS时钟3种方式。但采用前两者均要设计硬件线路,这对主机的完整性和可靠性不利,且同步RTC时钟只对初始开机有效。所有应用程序的计时都只取自于OS时钟(不包括低级程序对系统时钟的直接调用)。所以,只要对OS时钟进行同步,就可实现对所有应用程序的时间同步但由于同步时刻点之后OS计时仍然依赖低一级的BIOS时钟计时,为消减累计误差,必须周期性同步。
本系统的应用设计方案,并不将GPS时间码直接传送给每一个节点和RTU,而是先传送给主机,再主机传送给其它主机节点。这样既可以简化线路,又便于整个系统的时间统一。
系统时间同步的基本过程是:(1)整点时刻与UTC 1PPS脉冲前沿对应的BCD时间码信号到后,启动主机时间同步处理后台进程;(2)后台进程接收BCD时间码,将其转换为以秒为单位的长整型数,设置主机系统时钟,并采用紧缩传递方法将长整型数转换为ASCⅡ流,通过数据报Socket向其他主机节点广播;(3)其他主机节点接收ASCⅡ流,将其还原为长整型数,设置本机系统时间。

 

该厂商的其他产品



化工仪器网

采购商登录
记住账号    找回密码
没有账号?免费注册

提示

×

*您想获取产品的资料:

以上可多选,勾选其他,可自行输入要求

个人信息: