官方微信|手机版

产品展厅

产品求购企业资讯会展

发布询价单
北京连华永兴科技发展有限公司

化工仪器网>产品展厅>环境监测仪器>水质监测>叶绿素a/藻类分析仪> MC1000 8通道藻类培养与在线监测系统

分享
举报 评价

MC1000 8通道藻类培养与在线监测系统

具体成交价以合同协议为准

联系方式:王老师查看联系方式

联系我们时请说明是化工仪器网上看到的信息,谢谢!


   北京易科泰生态技术有限公司成立于2002年,为中关村高新技术企业,致力于生态-农业-健康研究监测技术推广、研发与服务,特别是在光谱成像技术(高光谱成像技术、叶绿素荧光成像技术、红外热成像技术、无人机遥感等)、植物表型分析技术、呼吸与能量代谢测量技术等方面,与专业企业PSI、Specim、Sable等合作,致力于植物科学、土壤与地球科学、动物能量代谢、水体与藻类及生态环境领域先进仪器技术的引进推广和技术研发集成,为植物/作物表型分析、生态修复及生态保护、能量代谢测量等提供规划设计、技术方案与系统集成、技术咨询与科技服务。公司技术团队80%以上具备硕士或硕士以上学位,并与*研究生院、中科院植物研究所、中科院动物所、中科院地理科学与资源研究所、中国农科院、中国林科院、中国环科院、中国水科院、清华大学、中国农业大学、北京林业大学、北京大学、中国海洋大学、陕西师范大学、内蒙古大学等建立了长期的技术合作交流关系。


   公司下设有叶绿素荧光技术与植物表型业务部、EcoTech®实验室、光谱成像与无人机遥感事业部及无人机遥感研究中心(与陕西师范大学合作建立)、动物能量代谢实验室、内蒙古阿拉善蒙古牛生态牧业研究院及青岛分公司。实验室拥有叶绿素荧光成像、叶绿素荧光仪、水体藻类荧光仪、SPECIM高光谱仪、WORKSWELL红外热成像仪、EasyChem全自动化学分析仪、MicroMac1000水质在线监测系统、ACE土壤呼吸自动监测系统、SoilBox便携式土壤气体通量测量系统、动物呼吸测量系统、LCpro 光合作用测量仪、Hood土壤入渗仪、年轮分析仪等各种仪器设备,可以进行实验研究分析、实验培训等,欢迎与易科泰生态研究室开展合作研究。


   易科泰公司与欧洲PSI公司(叶绿素荧光技术与表型分析技术)、美国SABLE公司(动物能量代谢技术)、欧洲SPECIM公司(高光谱成像技术)、欧洲WORKSWELL公司(红外热成像技术)、欧洲ATOMTRACE公司(LIBS元素分析技术)、欧洲BCN无人机遥感中心、欧洲ITRAX公司(样芯密度扫描与元素分析)、美国VERIS公司、英国ADC公司、德国UGT公司、欧洲SYSTEA公司等著名生态仪器技术领域的研发机构和厂商建立了密切的合作关系,在FluorCam叶绿素荧光成像与荧光测量技术、PlantScreen植物表型分析技术、高光谱成像技术、红外热成像技术、光合作用与植物生理生态研究监测、土壤呼吸与碳通量研究监测、动物呼吸代谢测量、水质分析与藻类研究监测、CoreScanner样芯密度CT与元素分析技术、LIBS元素分析技术、无人机生态遥感技术等生态仪器技术及其系统方案集成有着丰富的经验,成为我国农业、林业、地球科学、生态环境研究等领域科技进步的重要研究技术支持力量。由公司研制生产的EcoDrone®无人机遥感平台、SoilTron®多功能小型蒸渗仪技术、SoilBox®土壤呼吸测量技术、PhenoPlot®轻便型作物表型分析系统、SCG-N土壤剖面CO2/O2梯度监测系统、植物生理生态监测技术、动物能量代谢测量技术等,在中科院修购项目、*学科群项目、CERN网络(生态系统监测网络)等项目中发挥重要作用。


   “工欲善其事,必先利其器”,易科泰公司将秉承“利其器,善其事”的经营理念,为国内生态-农业-健康研究与发展提供优秀的技术方案和服务。


欢迎关注北京易科泰微信公众号




土壤与植物生理生态研究监测、环境气象监测、水文水质及地下水监测、水土保持研究监测、荒漠化监测、精准农业以及动物生态研究等仪器技术的引进推广和系统集成,并为生态环境实验研究和规划设计提供技术方案和分析测量。

产地类别 进口 价格区间 面议
仪器种类 实验室型 应用领域 环保,化工,生物产业,农业,能源
多通道培养 8 LED光源 标配冷白光LED,8个通道光源可定制
光密度在线监测 OD680/OD720 温度控制 15℃~60℃

   MC1000 8通道藻类在线监测系统由8个100ml藻类培养试管、水浴控温系统、LEDs光源控制系统及光密度和溶解氧(选配)在线监测系统等组成,可用于藻类培养与控制实验、梯度对比实验等,适于水体生态毒理学研究检测、藻类生理生态研究、水生态研究等,MC1000 8通道藻类在线监测系统主要功能特点如下:

  • 8通道藻类培养,每个藻类培养试管可培养85ml藻液

  • LEDs光源,可对每个培养试管独立调节控制和设置光强度和时间,如昼夜变化等

  • 光密度在线监测,包括OD680、OD720,监测数据自动存储

  • 溶解氧在线监测(备选)以测量分析藻类光合作用等

  • 温度、光照控制可用户设置不同的程序模式

  • 气泡混匀:可通过调节阀手动调节气流量以对培养试管内的藻类进行混匀

  • 可选配O2/CO2监测系统,在线监测藻类光合放氧和CO2吸收

  • 可选配藻类荧光测量模块

应用领域:

l 多通道同步藻类培养

l 同步梯度胁迫实验

l 培养条件优化

l 控制培养条件与藻类生长动力学监测

仪器型号:

MC 1000-OD: 8个通道光源颜色相同,标配冷白光LED

MC 1000-OD-WW:8个通道光源颜色相同,标配暖白光LED

MC 1000-OD-MULTI: 8个通道光源颜色不同,分别为1)紫光405nm,2)蓝紫光450nm,3)蓝光470nm或冷白光,4)暖白光,5)绿光540nm,6)黄橙光590nm,7)红光640nm,8)远红光730nm。

MC 1000-OD-MIX:每个通道可配备多8种不同颜色的LED光源,光源颜色可由用户定制,可选颜色为1)紫光405nm,2)蓝紫光450nm,3)蓝光470nm或冷白光,4)暖白光,5)绿光540nm,6)黄橙光590nm,7)红光640nm,8)远红光730nm。

技术指标:

  • 藻类同步培养通道:8个

  • 培养管容量:100ml,建议大培养容量85ml

  • 在线即时监测参数:分别监测每个培养管的OD680和OD720,数据自动保存到主机内存中,PIN光电二极管检测器,665-750nm带通滤波器

  • 精确控温范围:标准配置高于环境温度5-10℃(与光强有关)~60℃,可选配15℃-60℃(环境温度20℃,需加配制冷单元)

  • 加热系统:150W筒形加热器

  • 水浴体积:5L

  • 水浴自动补水模块(选配):水浴水位因蒸发降低后可自动补水

  • 光源系统:全LED光源,可在0-100%范围内调控,每个通道的光强可分别独立调控

  • MC 1000-OD:标配冷白光LED,可选配暖白光、红光(635nm)或蓝光(470nm)LED;光强0-1000μmol/m2/s可调, 可升级至0-2500μmol/m2/s

  • MC 1000-OD-WW:标配暖白光LED,光强0-1000μmol/m2/s可调,更高光强可定制

  • MC 1000-OD-MULTI:8个通道光源颜色不同,分别为紫光405nm,蓝紫光450nm,蓝光470nm或冷白光,暖白光,绿光540nm,黄橙光590nm,红光640nm,远红光730nm;光强0-1000μmol/m2/s可调

  • MC 1000-OD-MIX:每个通道可配备多8种不同颜色的LED光源,光源颜色可由用户定制,大光强可达2500μmol/m2/s

  • 控光模式:可静态或动态设置光照程序,如正弦、昼夜节律、脉冲等

  • 控制单元显示屏:可调控培养程序和显示数据

  • 气流调控:通过多管调节阀对8个培养管手动独立调控气体流量

  • OD测量程序:将主机内存中的OD数据下载到电脑中并以图表形式显示,数据可导出为TXT或Excel文件

  • MC实时在线监测分析模块(含工作站和软件基础版或高级版,选配)

  • 同时控制2台MC1000(基础版)或无限台MC1000(高级版)

  • 通过PBR软件动态调控光照和温度模式

  • 通过光密度(OD680、OD720)变化实时监测藻类生物量

  • 对生长速率进行实时回归分析

  • 多数据管理功能(过滤、查找、多重导出)

  • 可将测量数据、培养程序和其他信息保存到数据库中

  • 通过GUI图形用户界面设置培养程序并在线显示测量数据图

  • 数据可导出为CSV、Excel或XML文件

  • 支持GMS高精度气体混合系统(仅限高级版)

  • 用户自编程培养程序(仅限高级版)

  • 设定实验起始时间(仅限高级版)

  • 电子邮件通知(仅限高级版)

  • GMS150高精度气体混合系统(选配):可控制气体流速和成分,标配为控制氮气/空气和二氧化碳,气源需用户自备

  • 恒浊控制模块(选配):带有8个控制阀,可独立控制8个培养管的浊度,由软件自动控制

  • O2/CO2监测系统(选配):8通道续批式监测藻类CO2吸收或光合放氧通量:

  • 氧气分析测量:氧气测量范围0-100%,分辨率0.0001%,精确度优于0.1%,温度、压力补偿,数码过滤(噪音)0-50秒可调,具两行文字数字LCD背光显示屏,可同时显示氧气含量和气压

  • 二氧化碳分析测量:双波长非色散红外技术,测量范围0-5%或0-15%两级选择(双程),分辨率优于0.0001%或1ppm(可达0.1ppm),精确度1%,通过软件温度补偿,具两行文字数字LCD背光显示屏,可同时显示CO2含量和气压,具数码过滤(噪音)功能

  • 气体抽样与气路切换:具备隔膜泵、气流控制针阀和精密流量计,气路自动定时切换功能

  • 藻类荧光测量模块(选配):用于测量藻类荧光参数以反映藻类生理状态及浓度,荧光测量程序包括Ft,QY,OJIP-test,NPQ、光响应曲线等,可选配探头式测量或试管式测量:

  • 探头式测量:具备光纤测量探头,可插入培养液中原位测量藻类荧光参数

  • 试管式测量:具备测量杯,可取样精确测量藻类荧光参数及光密度值

  • 通讯方式:USB

  • 尺寸:71×33×21 cm

  • 重量:13kg

  • 供电:110-240V

应用案例:

不同CO2浓度下衣藻Chlamydomonas的生长曲线(Zhang,2014)

聚球藻Synechococcus野生型和△nblA的生长曲线(Yu,2015)

产地:捷克

参考文献:

1.  Barera S, et al. 2021. Effect of lhcsr gene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtii cultures. Journal of Biotechnology 328: 0168-1656.

2.  Pivato M, et al. 2021. Heterologous expression of cyanobacterial Orange Carotenoid Protein (OCP2) as a soluble carrier of ketocarotenoids in Chlamydomonas reinhardtii. Algal Research 55(16):102255.

3.  Gachelin M, et al. 2021. Enhancing PUFA-rich polar lipids in Tisochrysis lutea using adaptive laboratory evolution (ALE) with oscillating thermal stress. Applied Microbiology and Biotechnology 105: 301-312.

4.  Chen H, et al. 2021. A Novel Mode of Photoprotection Mediated by a Cysteine Residue in the Chlorophyll Protein IsiA. mBio 12(1).

5.  Cecchin M, et al. 2021. CO2 supply modulates lipid remodelling, photosynthetic and respiratory activities in Chlorella species 18(2): 431842.

6.  Dixit RB, et al. 2021. Secretomics: A Possible Biochemical Foot Printing Tool in Developing Microalgal C*tion Strategies. doi: 10.21203/rs.3.rs-163118/v1

7.  Kareya MS, et al. 2020. Photosynthetic Carbon Partitioning and Metabolic Regulation in Response to Very-Low and High CO2 in Microchloropsis gaditana NIES 2587. Frontiers in Plant Science 11: 981.

8.  Billey E, et al. 2021. Characterization of the Bubblegum acyl-CoA synthetase of Microchloropsis gaditana. Plant Physiology 185(3): 815-835.

9.  Vonshak A, et al. 2020. Photosynthetic characterization of two Nannochloropsis species and its relevance to outdoor c*tion. Journal of Applied Phycology 32(2):909-922.

10. Dienst D, et al. (2020). High density c*tion for efficient sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803. Scientific Reports 10(1): 5932.

11. Weiner I, et al. 2020. CSO -A sequence optimization software for engineering chloroplast expression in Chlamydomonas reinhardtii. Algal Research 46: 101788.

12. Akma C, et al. 2020. Two-phase method of c*ting Coelastrella species for increased production of lipids and carotenoids. Bioresource Technology Reports 9: 100366.

13. Cecchin M, et al. 2020. Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnology for Biofuels 13(1): 78.

14. Alvarenga D, et al. 2020. AcnSP – A Novel Small Protein Regulator of Aconitase Activity in the Cyanobacterium Synechocystis sp. PCC 6803. Frontiers in Microbiology 11: 1445.

15. Zhang B, et al. 2020. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data. BMC Plant Biology 20(1): 424.

16. Nzayisenga, JC, et al. 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels 13(284): 1179-1184.

17. Cecchin M, et al. 2020. Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnology for Biofuels 13(6): 312.

18. Flamholz AI, et al. 2020. Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli. eLife 9: e59882.

19. Gupta JK, et al. 2020. Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcus sp. PCC 7002 increases growth rate and glycogen accumulation. Biotechnology for Biofuels 13: 17.

20. Valev D, et al. 2020. Testing the Potential of Regulatory Sigma Factor Mutants for Wastewater Purification or Bioreactor Run in High Light. Current Microbiology 77(8) : 1590-1599.

21. Yao L, et al.. 2020. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nature Communications 11(1): 1666.

22. Shrameeta S, et al. 2020. Glycogen Metabolism Supports Photosynthesis Start through the Oxidative Pentose Phosphate Pathway in Cyanobacteria1. Plant Physiology 182(1):507-517.

23.  Alessandra B, et al. 2020. Photosynthesis Regulation in Response to Fluctuating Light in the Secondary Endosymbiont Alga Nannochloropsis gaditana. Plant & Cell Physiology 61(1): 41-52..





化工仪器网

采购商登录
记住账号    找回密码
没有账号?免费注册

提示

×

*您想获取产品的资料:

以上可多选,勾选其他,可自行输入要求

个人信息: